1. | EXECUTIVE SUMMARY |
1.1. | Executive introduction: Electronic skin patches |
1.2. | Application overview |
1.3. | Skin patches competing with established products |
1.4. | New market creation around skin patches |
1.5. | Applications, market sizes and outlook |
1.6. | Wearable, ambulatory cardiac monitoring: Comparison of over 35 players |
1.7. | Key conclusions: cardiac monitoring skin patches |
1.8. | Cardiac monitoring skin patches: Historic data: 2010-2018 |
1.9. | Cardiac monitoring skin patches: Market forecasts |
1.10. | Diabetes management: Positioning of 25 players |
1.11. | A shifting focus in diabetes management Historic data: 2010-2018 |
1.12. | The growth of CGM accelerates |
1.13. | Diabetes management: full historic data and forecast |
1.14. | Key conclusions: Iontophoresis |
1.15. | Skin patch temperature sensing: Use cases across 12 case studies |
1.16. | Key conclusions: Temperature sensing skin patches |
1.17. | Key conclusions: Motion sensing |
1.18. | Key conclusions: Sweat sensing |
1.19. | List of players from case studies |
2. | INTRODUCTION |
2.1. | The case for skin patches: Augmenting the human body |
2.2. | The case for skin patches: Improving device form factor |
2.3. | Definitions and exclusions |
2.4. | History of skin patches |
2.5. | Applications, market sizes and outlook |
2.6. | Reimbursement drives commercial business models |
2.7. | Commercialising skin patches: Survey of over 100 different examples |
2.8. | List of players from case studies |
2.9. | Commercial progress by form factor |
2.10. | Commercial progress vs form factor |
2.11. | Commercial progress by application focus |
2.12. | Commercial progress vs application focus |
2.13. | Patents: Total active patents by assignee |
2.14. | Patents: Active and strong patents by assignee |
2.15. | Top 30 skin patch patent assignees, by country & region |
2.16. | Patents: Assignees with activity in the last 2 years |
2.17. | Skin patch commercialisation efforts, by geography |
2.18. | Context: Wearables hype |
2.19. | Glossary |
3. | ELECTRONIC SKIN PATCH APPLICATIONS |
3.1. | Application overview |
3.1.1. | Application overview |
3.1.2. | Skin patches competing with established products |
3.1.3. | New market creation around skin patches |
3.1.4. | Section contents |
3.2. | Cardiovascular monitoring skin patches |
3.2.1. | Introduction - Cardiovascular monitoring via wearable devices |
3.2.2. | Introduction - Measuring biopotential |
3.2.3. | Introduction - Electrocardiography (ECG, or EKG) |
3.2.4. | Technology overview - the circuitry for measuring biopotential |
3.2.5. | Technology overview - electrode properties |
3.2.6. | Progress towards ambulatory cardiac monitoring |
3.2.7. | Differentiation between ambulatory cardiac monitors |
3.2.8. | Wearable vs implantable monitoring |
3.2.9. | Reimbursement codes for wearable cardiac monitors |
3.2.10. | Scenario: Reduction in reimbursement for MCT in the US market |
3.2.11. | Reimbursement codes for implantable cardiac monitors |
3.2.12. | Example: Medtronic (SEEQ & LINQ) |
3.2.13. | Wearable, ambulatory cardiac monitoring: Comparison of over 35 players |
3.2.14. | Wearable, ambulatory cardiac monitoring: Comparison of over 35 players |
3.2.15. | Case studies: key players |
3.2.16. | BioTelemetry, Inc. |
3.2.17. | BioTelemetry: Timeline |
3.2.18. | iRhythm: ZIO |
3.2.19. | Medtronic: SEEQ MCT |
3.2.20. | VivaLNK |
3.2.21. | Cardiomo |
3.2.22. | Holst Center: Skin patches |
3.2.23. | Byteflies & Quad Industries |
3.2.24. | Vivomi |
3.2.25. | LumiraDx: Ampstrip |
3.2.26. | QT Medical |
3.2.27. | Competition with other form factors |
3.2.28. | Other form factors for ambulatory cardiac monitoring |
3.2.29. | Comparison: Chest straps |
3.2.30. | Comparison: Apparel |
3.2.31. | Comparison: Apparel (examples) |
3.2.32. | Comparison: Portable devices |
3.2.33. | Comparison: Smartwatch optical HRM |
3.2.34. | Market data and forecasts |
3.2.35. | Market overview and forecasts |
3.2.36. | Cardiac monitoring skin patches: Historic data: 2010-2018 |
3.2.37. | Cardiac monitoring skin patches: Market forecasts |
3.2.38. | Key conclusions: cardiac monitoring skin patches |
3.3. | Wireless inpatient monitoring via skin patches |
3.3.1. | Inpatient monitoring: The case for removing the wires |
3.3.2. | Players and approaches |
3.3.3. | Sensium (Surgical Company Group) |
3.3.4. | VitalConect |
3.3.5. | Isansys Lifecare |
3.3.6. | Leaf Healthcare |
3.3.7. | Conclusions & related areas |
3.4. | Diabetes management via skin patches |
3.4.1. | Background: Diabetes in numbers |
3.4.2. | Background: Diabetes on the rise |
3.4.3. | Background: The cost of diabetes |
3.4.4. | Diabetes management process |
3.4.5. | Diabetes management device roadmap: Sensors |
3.4.6. | Non-invasive glucose monitoring? |
3.4.7. | Opinions against non-invasive glucose monitoring |
3.4.8. | The case for CGM |
3.4.9. | Skin patches for diabetes management |
3.4.10. | Competition from the reimbursement scenario |
3.4.11. | Diabetes management: Positioning of 25 players |
3.4.12. | Key players in continuous glucose monitoring (CGM) |
3.4.13. | CGM: Overview of key players |
3.4.14. | Abbott Laboratories |
3.4.15. | Abbott: FreeStyle Libre |
3.4.16. | Abbott: SMBG vs CGM comparison |
3.4.17. | Dexcom |
3.4.18. | Medtronic |
3.4.19. | Medtronic: Patents in CGM |
3.4.20. | Roche |
3.4.21. | Roche: Patents in CGM |
3.4.22. | Senseonics |
3.4.23. | Other players |
3.4.24. | Sano |
3.4.25. | PKVitality |
3.4.26. | Verily / Google: Contact lenses |
3.4.27. | DiabeLoop |
3.4.28. | Academic examples |
3.4.29. | Binghampton University |
3.4.30. | University of Bath |
3.4.31. | Insulin delivery |
3.4.32. | Diabetes management device roadmap: Insulin delivery |
3.4.33. | Insulin pumps: Introduction |
3.4.34. | Patent activity in insulin pumps is prominent |
3.4.35. | Insulin pumps currently available |
3.4.36. | Insulin pump breakdown |
3.4.37. | Insulin patch pumps |
3.4.38. | Example: Progress from Medtronic |
3.4.39. | Outlook for insulin pumps |
3.4.40. | Linking insulin pumps and CGM: Towards an artificial pancreas |
3.4.41. | Today: Hybrid closed loop systems |
3.4.42. | Example: Progress from Medtronic |
3.4.43. | The objective: Closing the feedback loop |
3.4.44. | Examples and partnerships |
3.4.45. | Market data: Historic & forecasts |
3.4.46. | A shifting focus in diabetes management Historic data: 2010-2018 |
3.4.47. | Test strip business in decline |
3.4.48. | The growth of CGM accelerates |
3.4.49. | Diabetes management: full historic data and forecast |
3.5. | Iontophoresis skin patches: Cosmetics and drug delivery |
3.5.1. | Introduction - Iontophoresis |
3.5.2. | Cosmetics |
3.5.3. | Cosmetic skin patches |
3.5.4. | Estée Lauder |
3.5.5. | BioBliss™, Iontera, Patchology |
3.5.6. | Feeligreen (Feeligold) |
3.5.7. | Drug delivery |
3.5.8. | Iontophoresis for drug delivery |
3.5.9. | Drugs studied for iontophoretic delivery |
3.5.10. | Feeligreen (Feelicare) |
3.5.11. | Seoul National University: Parkinson's medication via skin patches |
3.5.12. | Reverse iontophoresis |
3.5.13. | Reverse Iontophoresis |
3.5.14. | Example: GlucoWatch |
3.5.15. | Nemaura Medical: sugarBEAT |
3.5.16. | Key conclusions: Iontophoresis |
3.6. | Temperature sensing skin patches |
3.6.1. | Introduction - Body Temperature |
3.6.2. | Temperature sensing technology options |
3.6.3. | Approaches and standards for medical temperature sensing |
3.6.4. | Skin patches for temperature sensing |
3.6.5. | Skin patch temperature sensing: Use cases across 12 case studies |
3.6.6. | VivaLNK |
3.6.7. | VivaLNK & Reckitt Benckiser |
3.6.8. | Blue Spark |
3.6.9. | Life Science Technology |
3.6.10. | Isansys Lifecare |
3.6.11. | Gaugewear |
3.6.12. | greenTEG |
3.6.13. | PST Sensors |
3.6.14. | Raiing Medical |
3.6.15. | Bonbouton |
3.6.16. | CSEM |
3.6.17. | Covestro |
3.6.18. | Alternative options: Tympanic temperature sensing |
3.6.19. | Key conclusions: Temperature sensing skin patches |
3.7. | Sweat sensing: Sweat rate and biomarkers |
3.7.1. | Introduction - Sweat sensing |
3.7.2. | Measuring sweat rate |
3.7.3. | Technology overview - measuring bioimpedance |
3.7.4. | Technology overview - Galvanic skin response (GSR) |
3.7.5. | Technology overview - humidity sensors for sweat |
3.7.6. | GE Global Research |
3.7.7. | Sensing biomarkers in sweat |
3.7.8. | Technology overview - chemical sensing in sweat |
3.7.9. | Sweat vs other sources of analytes |
3.7.10. | Analytes in sweat |
3.7.11. | Technology overview: Chemical sensing |
3.7.12. | Biolinq |
3.7.13. | Kenzen |
3.7.14. | Milo Sensors |
3.7.15. | Eccrine Systems |
3.7.16. | PARC / UCSD |
3.7.17. | Stanford and UC Berkeley |
3.7.18. | Xsensio |
3.7.19. | Epicore Biosystems |
3.7.20. | Key conclusions: Sweat sensing |
3.8. | Motion sensing with skin patches |
3.8.1. | Introduction - Monitoring motion via skin patches |
3.8.2. | Different modes for sensing motion |
3.8.3. | Measuring motion with inertial measurement units |
3.8.4. | Introduction - Inertial measurement units |
3.8.5. | Measuring motion with IMUs: Examples |
3.8.6. | Value chain and examples of players |
3.8.7. | IMUs in skin patches |
3.8.8. | Suunto: Movesense |
3.8.9. | Measuring motion with conformal sensors |
3.8.10. | Introduction - alternatives for measuring motion |
3.8.11. | Technology overview - Resistive/piezoresistive sensing |
3.8.12. | Players and industry dynamic |
3.8.13. | Peratech |
3.8.14. | Quantum tunnelling composite: QTC® |
3.8.15. | QTC® vs. FSR™ vs. piezoresistor? |
3.8.16. | Bebop Sensors |
3.8.17. | Bainisha |
3.8.18. | Technology overview - Capacitive sensing |
3.8.19. | Parker Hannifin |
3.8.20. | Stretchsense |
3.8.21. | LEAP Technology |
3.8.22. | Technology overview - Piezoelectric sensing |
3.8.23. | Application examples |
3.8.24. | Applications for skin patch motion sensors |
3.8.25. | Case study - Concussion detection |
3.8.26. | X2 Biosystems |
3.8.27. | US Military head trauma patch / PARC |
3.8.28. | Triax |
3.8.29. | Key conclusions: Motion sensing |
3.9. | Wound monitoring and treatment with skin patches |
3.9.1. | Wound Monitoring |
3.9.2. | Wound Monitoring: KAUST |
3.9.3. | Wound Monitoring: Purdue University |
3.9.4. | Wound Monitoring: Tufts University |
3.9.5. | Wound Monitoring: Tyndall National Institute |
3.9.6. | Wound Monitoring: UC Berkeley |
3.9.7. | Wound Monitoring: UCSD |
3.9.8. | Wound Monitoring: VTT |
3.9.9. | Wound Treatment |
3.10. | Others applications of skin patches |
3.10.1. | List of examples |
3.10.2. | General technology platforms |
3.10.3. | Qualcomm Life |
3.10.4. | Qualcomm Life / Capsule Technologies |
3.10.5. | LifeSignals |
3.10.6. | Samsung |
3.10.7. | MC10 |
3.10.8. | DevInnova / Scaleo Medical |
3.10.9. | Other healthcare & medical applications |
3.10.10. | Acoustic respiration rate |
3.10.11. | Proteus Digital Health |
3.10.12. | Novioscan: Wearable Ultrasound |
3.10.13. | GraftWorx |
3.10.14. | Supporting vaccination with microneedle patches |
3.10.15. | Avanix |
3.10.16. | Avanix - business model and target milestones |
3.10.17. | Other fitness & wellness applications |
3.10.18. | UV protection |
3.10.19. | MC10 & L'Oréal: Wisp |
3.10.20. | Hivox Biotek |
3.10.21. | Lief Therapeutics: Stress Management |
3.10.22. | Others |
3.10.23. | EOG - eye tracking with skin patches |
4. | SKIN PATCH TECHNOLOGY DEVELOPMENT |
4.1. | Introduction: Skin patch technology development |
4.2. | Flexible electronics |
4.3. | Flexible substrates |
4.4. | Plastic substrates |
4.5. | Key parameters for plastic substrates |
4.6. | Flexible glass |
4.7. | Stretchable or extremely flexible circuit boards |
4.8. | Stretchable or extremely flexible circuit boards (Reebok) |
4.9. | Examples of thin and flexible PCBs in wearable and display applications |
4.10. | Examples of thin and flexible PCBs in various applications |
4.11. | Stretchable meandering interconnects |
4.12. | Stretchable printed circuits boards |
4.13. | Examples of fully circuits on stretchable PCBs |
4.14. | Conductive inks |
4.15. | Hypoallergenic conductive inks for skin patches |
4.16. | Examples of circuits printed with conductive inks |
4.17. | Stretchable actually-printed electronic circuits/systems |
4.18. | Stretchable inks: general observations |
4.19. | Performance of stretchable conductive inks |
4.20. | Evolution and improvements in performance of stretchable conductive inks |
4.21. | Stretchable ink: suppliers increase |
4.22. | Electronic skin microsystems for health monitoring |
5. | MARKET FORECASTS |
5.1. | Forecast details and assumptions |
5.2. | Historic data: All electronic skin patches, 2010-2018 |
5.3. | Market forecast: All electronic skin patches, 2019-2029 |
5.4. | Historic data: Cardiovascular monitoring skin patches, 2010-2018 |
5.5. | Market forecast: Cardiovascular monitoring skin patches, 2019-2029 |
5.6. | Historic data: Skin patches for diabetes management, 2010-2018 |
5.7. | Market forecast: Skin patches for diabetes management, 2019-2029 |
5.8. | Historic data: Skin patches for patient monitoring, 2010-2018 |
5.9. | Market forecast: Skin patches for patient monitoring, 2019-2029 |
5.10. | Historic data: Temperature monitoring skin patches, 2010-2018 |
5.11. | Market forecast: Temperature monitoring skin patches, 2019-2029 |
5.12. | Historic data: Skin patches for iontophoresis, 2010-2018 |
5.13. | Market forecast: Skin patches for iontophoresis, 2019-2029 |
5.14. | Historic data: Other types of electronic skin patch, 2010-2018 |
5.15. | Market forecast: Other types of electronic skin patch, 2019-2029 |
6. | KEY PLAYERS |
6.1. | List of 101 electronic skin patch case studies |