CPI enhance printed electronics capability with NovaCentrix | IDTechEx Research Article

CPI enhance printed electronics capability with NovaCentrix

The Centre for Process Innovation (CPI) enhance printed electronics capability with the installation of NovaCentrix PulseForge® photonic curing system.

CPI enhance printed electronics capability with NovaCentrix
The Centre for Process Innovation (
×CPI
CPI
is exhibiting at the
IDTechEx Show!
Estrel Convention Center, Berlin, Germany
11 - 12 Apr 2018
CPI) has recently partnered with
×NovaCentrix
NovaCentrix
is exhibiting at the
IDTechEx Show!
Santa Clara Convention Center, CA, USA
15 - 16 Nov 2017
NovaCentrix to install a specialist system designed for the high speed photonic curing of printed electronics inks. The NovaCentrix PulseForge 1300 state-of-the-art system is the first of its kind in the UK to be available to clients on an open access basis and will aid the commercialisation of a host of applications including printed sensing and Radio Frequency Identification (RFID) and Near Field Communication (NFC) antennas for smart packaging. The recent installation builds upon CPI's existing capability for the market adoption of printed sensing technologies, allowing companies to develop and scale up their concepts from laboratory scale right through to pilot production.
 
Photonic curing has become a critical process in the manufacture of printed electronics products as very little energy is needed to sinter the inks to a high temperature. This allows for printed circuits to be produced on inexpensive and flexible materials such as plastic, paper or cardboard, whilst achieving excellent conductivity and without causing thermal damage to these materials. The technology is ideal for a number of printed electronics based applications that utilise low cost substrates such as printed temperature, capacitive touch and medical sensors, in addition to wearable electronics, energy harvesting devices and intelligent packaging products.
 
The NovaCentrix PulseForge tool at CPI uses specialist computer controlled high-intensity pulsed light technology enabling conductive inks to be sintered or annealed in a matter of milliseconds. The tool also provides the opportunity for comparably low cost inks formulated from copper-oxide and the rapid development of new printable electronics applications. Processing developed with the PulseForge 1300 at CPI can immediately be applied to volume production using the PulseForge platforms already in use for manufacturing of products sold world-wide.
 
New opportunities are opening up to integrate high volume, low cost printed sensors into everyday products with applications in a number of market sectors. The 'Internet of Things' and NFC are increasingly gathering attention from businesses, technology providers and most importantly the modern day consumer. NFC allows consumers to intuitively communicate with everyday items such as product packaging and sensors. The printing of electronic functionality has enabled product designers to embed electronic technology into their designs, creating innovative products that are low cost, smarter, lightweight and wireless. Applications are numerous, from interactive point-of-sale products and branding to disposable printed bio-sensors used in medical analysis and unobtrusive printed smart labels that allow for identification and anti-counterfeiting control. The integration of advanced printed sensors into paper and plastic opens up a wide range of market opportunities to create products with added value. Sensors can be designed to provide the opportunity to optimise logistics operations and stock control within the product life cycle and also to indicate the validity or quality of a product or whether the packaging has been subject to tampering during its transport and storage prior to purchase.
 
Commenting on the announcement Dr Alan McClelland, Business Manager at CPI says:
 
"CPI is delighted to be working together with NovaCentrix to provide leading photonic curing technology for printable electronics applications. The collaboration builds upon existing printing capability at CPI and provides the opportunity to rapidly sinter conductive inks and also assess an extensive range of functional inks and substrate materials for market testing and investment purposes. "
 
Stan Farnsworth, VP Marketing at NovaCentrix adds, "CPI is well-known throughout the UK as well as internationally as a centre of excellence especially for the development and commercialisation of printed electronics. We are delighted to be able to work together with their innovative team."
 
About CPI
The Centre for Process Innovation is a UK-based technology innovation centre and part of the High Value Manufacturing Catapult. We use applied knowledge in science and engineering combined with state of the art development facilities to enable our clients to develop, prove, prototype and scale up the next generation of products and processes.
Our open innovation model enables clients to develop products and prove processes with minimal risk. We provide assets and expertise so our customers can demonstrate the process before investing substantial amounts of money in capital equipment and training. New products and processes can be shown to be feasible; on paper, in the lab and in the plant before being manufactured at an industrial scale.
By utilising our proven assets and expertise companies can take their products and processes to market faster. There is no down time in production as all of the process development is completed offsite and our technology transfer and engineering teams can help companies to transfer the product or process into full scale production at speed.
www.uk-cpi.com
 
NovaCentrix is advancing the state of the art in printed electronics processing equipment and materials. The patented PulseForge® photonic curing tools are used when materials require high temperature drying, sintering, or annealing on substrates like polymers and paper. Metalon® and PChem water-based conductive inks combine high conductivity and economical pricing in silver and copper. The SimPulse® photonic curing simulation accurately models the thermal response of multi-layer materials to processing with PulseForge tools, saving time in the lab. Our experts accelerate product development and successfully implement full-scale manufacturing. Let us help you succeed.
www.novacentrix.com
Learn more at the next leading event on the topic: Business and Technology Insight Forum. Japan 2017 External Link on 27 - 29 Sep 2017 in Tokyo, Japan hosted by IDTechEx.