Green Hydrogen Production: Electrolyzer Markets 2021-2031: IDTechEx

A multi billion market in 2031 with a 48% CAGR in 2021-2031

Green Hydrogen Production: Electrolyzer Markets 2021-2031

Techno-economic analysis of Alkaline (AWE), PEM (PEMEL), and Solid Oxide (SOEL) electrolyzer systems, with major market players and future green hydrogen production trends.

显示全部 说明 内容、图表列表 价格 Related Content
The development of the hydrogen economy seems to have started. With increasing installations of hydrogen systems in 2019 and 2020, the hydrogen economy began with the most essential technology for its development: the adoption of electrolyzer systems.
From the announcement of multi billion investment in the hydrogen sector, and the growing adoption of national hydrogen plans, particularly in Europe, IDTechEx identify hydrogen and particularly the electrolyzers market as a fast-growing scenario.
Beginning with the necessity of hydrogen technologies, in the 'Green Hydrogen Production: Electrolyzer Markets 2021-2031' report, IDTechEx started to analyse the actual necessity of the so-called hydrogen economy, providing a comparison with battery solutions. Following with an explanation of the European EU-ETS carbon pricing method, its effectiveness and comparison with other existing carbon taxes is shown. Although restrictions to CO2 emissions must be fulfilled by different industries, to achieve this target the adoption/integration of green technologies has to be performed.
To understand how the electrolyzer market will evolve, in the report the main end-users of hydrogen have been investigated, and following the trends analysed.
A deep dive into the different electrolyzer systems is then provided, where differences between the three main electrolyzer systems are provided, in terms of working mechanism, employed materials, system performance, and – a key parameter IDTechEx's view – the different degradation processes taking place.
The adopted materials allow the reader to understand which possible OEMs and eventual technical improvements are possible. Coupled with the company profiles performed by IDTechEx, a complete vision of the electrolyzer market is obtained. On the other end, the different degradation processes taking place in the different components of each electrolyzer, show the reader the technical limits and hence future application of the electrolyzer systems.
With the current state of development, the market is populated with three electrolyzers: alkaline water electrolyzer (AWE), proton exchange membrane electrolyzer (PEMEL), and solid oxide electrolyzers (SOEL), although only the first two are actively commercialised. All three devices employ electricity to split the water molecules into H2 and O2, and differences among the three technologies are given by the ions exchanged between the two electrodes (OH-, H+, and O= for AWE, PEMEL, and SOEL respectively) which involve the adoption of different electrolytes and materials. Different mechanisms and materials directly impact the performance and properties of each of the three electrolyzers.
The AWE systems are the older and most adopted at industrial scale, with first installations occurring in the 1920s. PEMEL devices come from the improvement of PEM fuel cells. The first installations of PEMEL systems were recorded in the 2000s.
The latest and youngest technology, SOEL systems are currently approaching the market. Besides the different ion exchange by the device, this system operates at higher temperature (600-850 Celsius) than PEM or AEL device (both ranging between 50 and 90 Celsius). The higher working operation of this system, although requiring resistant materials and expensive fabrication processes, prevent the utilisation of expensive catalysts, facilitating the decomposition of water molecules, but also allowing the adoption of other fuels, such as CO2 and water vapour, obtaining another important industrial gas feedstock: syngas (CO + H2).
The electrolyzer market is currently split between the two older technologies: alkaline and proton exchange membrane. The early stage of the SOEL technology is slowly approaching the market.
In the final part of the report, the efficiency calculation of commercialised systems has been performed, showing the reader a comparison of PEMEL and AWE systems. From the analysis performed, IDTechEx outlined the future trends of adoption of the main electrolyzer types.
In conclusion, given the detailed investigation IDTechEx performed to understand the current evolution of the electrolyzer market, the latest developments regarding the largest electrolyzer manufacturers are provided. These case studies are clear examples of how the electrolyte manufacturers are approaching the market.
The outcome of the techno-economic investigation provided by the report is a market forecast regarding the amount of electrolyzer systems in MW installed, together with an estimation of the market value.
从 IDTechEx 访问分析师
所有报告购买订单均包括与一名专家分析师进行 30 分钟的电话交谈,专家分析师将帮助您将报告中的重要发现与您正在处理的业务问题联系起来。这需要在购买报告后的三个月内使用。
如果您对这一报告有任何疑问,请随时联系我们的报告团队 或致电我们的销售经理:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.1.The new hydrogen hype needs economic support
1.2.Main hydrogen users and future adopters
1.3.Electrolyzer Systems Overview
1.4.Electrolyzer systems comparison - Operating parameters
1.5.PEMEL-AWE Efficiency trend
1.6.PROS and CONS of AWE and PEMEL systems
1.7.SOEL systems: a substitute for AWE?
1.8.Electrolyzer Market Overview
1.9.Hydrogen companies in the world
1.10.Global electrolyzer players
1.11.Downstream electrolyzer component vendors
1.12.Electrolyzer Market Forecast 2021-2031
1.13.Forecast Assumption
1.14.Future trend of the electrolyzer market
2.1.1.Introduction to hydrogen and electrolyzer systems
2.2.The Hydrogen Economy
2.2.1.What is a Hydrogen Economy?
2.2.2.The Hydrogen Economy: Overview
2.2.3.Have we found the Chicken and the Egg?
2.2.4.How Green H2 production will increase RES installations
2.2.5.Hydrogen Economy Development Issues
2.2.6.Why not a "Battery Economy"?
2.2.7.What about BEV and FCEV?
2.2.8.BEV and FCEV Efficiency Comparison
2.2.9.When we will see the hydrogen economy
2.3.Carbon Pricing
2.3.1.Where will the hydrogen economy begin?
2.3.2.Carbon pricing
2.3.3.Carbon pricing across the world
2.3.4.Challenges with carbon pricing
2.3.5.Carbon pricing in the European Union
2.3.6.Has the EU ETS had an impact?
2.3.7.CO2 cost impact on Steel industry
2.3.8.CO2 emissions comparison
2.4.Hydrogen End Users
2.4.1.Hydrogen End Users Analysis
2.4.2.IDTechEx Hydrogen consumption forecast: Ammonia
2.4.3.IDTechEx Hydrogen consumption forecast: Refinery
2.4.4.IDTechEx Hydrogen consumption forecast: Methanol
2.4.5.IDTechEx Hydrogen consumption forecast: Steel
2.4.6.Hydrogen adoption in steel production: Overview
2.4.7.Steel production processes
2.4.8.Green hydrogen for steel making industry
2.4.9.CO2 emissions comparison
2.4.10.Green Steel Projects:
2.4.11.Hydrogen for ammonia production
2.4.12.Ammonia: 'The dark side of Hydrogen'
2.4.13.Hydrogen application in refinery process
2.4.14.Gas Blending
2.4.15.Hydrogen Applications
3.1.1.Electrolyzers Introduction
3.1.2.PROS and CONS of AWE and PEMEL systems
3.1.3.SOEL systems: a substitute to AWE?
3.1.4.The colours of Hydrogen
3.1.5.Hydrogen Production Methods
3.1.6.Hydrogen Production Methods: Steam Reforming (SMR)
3.1.7.Hydrogen Production Methods: Partial Oxidation (POX)
3.1.8.Hydrogen Production Methods: Autothermal Reforming (ATR)
3.2.Alkaline Water Electrolyzer (AWE)
3.2.1.Alkaline Electrolyzer: Overview
3.2.2.AWE electrolyzers systems: Materials, Specifics
3.2.3.Alkaline Electrolyzer: Cathode Reaction
3.2.4.Alkaline Electrolyzer: Cathode Materials (HER)
3.2.5.Alkaline Electrolyzer: Anode Reaction (OER)
3.2.6.AWE Anode-Cathode summary
3.2.7.Alkaline and Anion Exchange Membrane Electrolyzers
3.2.8.AWE system - 'Zero-Gap' configuration advantages
3.2.9.AWE Diaphragm Characteristics
3.2.10.AWE: Spacer and Electrolyte
3.2.11.AWE: Membrane Electrode Assembly (MEA)
3.2.12.AEMWE Overview
3.2.13.Commercial AEM electrolyte and cell performances
3.2.14.Large scale AWE system
3.2.15.AEL Supply chain
3.2.16.Proton Exchange Membrane Electrolyzer (PEMEL)
3.2.18.PEM electrolyzers systems: Materials, Specifics
3.2.19.Proton Exchange Membrane Electrolyzer
3.2.20.Three Phase Boundary and Proton Exchange Membrane
3.2.21.PEMEL Working Mechanism
3.2.22.PEMEL stack and components
3.2.23.Electrolyzer system: BOP and Stack
3.2.24.OER Electrocatalyst
3.2.25.HER Electrocatalyst
3.2.26.Electrocatalyst Degradation Aspects
3.2.27.PEMEL Membrane: Overview
3.2.28.Membrane degradation problems
3.2.29.Membrane degradation processes
3.2.30.Current Collectors (CCs)
3.2.31.Bipolar Plates (BPs)
3.2.32.Bipolar Plates Materials
3.2.33.Titanium BP drawbacks
3.2.34.PEMEL Technical overview
3.2.35.PEMEL cost breakdown
3.2.36.PEMEL Supply chain
3.3.Solid Oxide Electrolyzer (SOEL)
3.3.1.Solid Oxide Electrolyzer (SOEL)
3.3.3.Solid Oxide Electrolyzer: Overview
3.3.4.Reversible - SOFC
3.3.5.Solid Oxide Electrolyzer: Solid Electrolyte
3.3.6.Solid Oxide Electrolyzer: Electrodes
3.3.7.SOEL Electrolyzers systems: Materials, Specifics
3.3.8.SOEL Market
3.3.9.SOEL Supply Chain
4.1.Electrolyzer Manufacturers: Overview
4.2.Market Overview
4.3.Dynamic Operation Property
4.4.Europe is leading the hydrogen market
4.5.Hydrogen projects in Europe
4.6.Hydrogen related projects
4.7.Comparison of electrolyzer systems - Materials
4.8.Electrolyzer systems comparison - Operating parameters
4.9.Downstream electrolyzers component vendors
4.10.Global electrolyzer players
4.11.Market Addressed by EL manufacturer
4.12.Companies Interviewed by IDTechEx
4.13.Commercialised electrolyzer efficiency comparison
4.14.Electrolyzers efficiency charts
4.15.PEMEL Efficiency trend
4.16.PEMEL-AWE efficiency trend
5.1.Nel ASA
5.2.Nel Overview
5.3.Nel 2020 analysis
5.4.Plug Power
5.5.Plug Power: Overview
5.6.PlugPower - Acquisitions and Partnerships
5.7.Plug Power developing its own supply chain
5.8.ITM Power
5.9.ITM Power: 'A transformational 2020'
5.10.1GW PEM electrolyzer factory in Sheffield (UK)
5.11.ITM strong involvement in HRS deployment
5.12.ITM Power: Power-to-Gas and Gas-Grid projects
5.13.ITM Power electrolyzers for industrial applications
5.14.ITM Power - Linde joint venture
5.15.ITM Power Projects
5.17.McPhy Overview
5.18.From €18m to €198m Capital Increase
5.19.McPhy's strategic Partners

Ordering Information

Green Hydrogen Production: Electrolyzer Markets 2021-2031

电子版(1-5 名用户)
电子版(6-10 名用户)
电子版及 1 份硬拷贝文件(1-5 名用户)
电子版及 1 份硬拷贝文件(6-10 名用户)
电子版(1-5 名用户)
电子版(6-10 名用户)
电子版及 1 份硬拷贝文件(1-5 名用户)
电子版及 1 份硬拷贝文件(6-10 名用户)
电子版(1-5 名用户)
电子版(6-10 名用户)
电子版及 1 份硬拷贝文件(1-5 名用户)
电子版及 1 份硬拷贝文件(6-10 名用户)
电子版(1-5 名用户)
电子版(6-10 名用户)
电子版及 1 份硬拷贝文件(1-5 名用户)
电子版及 1 份硬拷贝文件(6-10 名用户)
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方は までご連絡ください。

Subscription Enquiry