1. | EXECUTIVE SUMMARY |
1.1. | 2025 trends in the Li-ion market |
1.2. | Advanced Li-ion technology key takeaways |
1.3. | Li-ion performance and technology timeline |
1.4. | Key technology developments |
1.5. | Advanced Li-ion developers |
1.6. | Battery technologies - start-up activity |
1.7. | Battery technologies - level of regional activity |
1.8. | Battery technology start-ups - regional activity |
1.9. | Regional efforts |
1.10. | Battery technology comparison |
1.11. | Performance comparison by popular cell chemistries |
1.12. | Silicon Anodes Offer Potentially Significant Performance Benefits... |
1.13. | Silicon Also Presents Significant Disadvantages |
1.14. | Silicon anode summary |
1.15. | Si-anode performance summary |
1.16. | Multiple next-gen silicon anode material designs |
1.17. | Key silicon-anode company technologies and performance |
1.18. | Material opportunities from silicon anodes |
1.19. | Li-metal anodes |
1.20. | Li-metal battery developers |
1.21. | Metal oxide anodes |
1.22. | Anode materials comparison |
1.23. | Remarks on solid-state batteries |
1.24. | Comparison of solid-state electrolyte systems |
1.25. | SSB technology summary of various companies |
1.26. | Cathode development summary |
1.27. | Benefits of high and ultra-high nickel NMC |
1.28. | High-nickel CAM stabilisation |
1.29. | LMR-NMC / Li-Mn-rich cost profile |
1.30. | LMFP comparison |
1.31. | Advanced cathode chemistry comparison |
1.32. | Alternative cathode synthesis routes |
1.33. | Player involvement in advanced cathode technologies |
1.34. | Li-S performance compared |
1.35. | Lithium-sulfur cost comparison |
1.36. | Li-S players |
1.37. | Cell and battery design |
1.38. | Technology readiness level snapshot |
1.39. | Risks and challenges in new battery technology commercialisation |
1.40. | Risks and challenges in new battery technology commercialisation |
1.41. | BEV cathode forecast (GWh) |
1.42. | BEV anode forecast (GWh) |
1.43. | Advanced anode forecast (GWh) |
1.44. | Advanced anode forecast (kt, US$B) |
2. | INTRODUCTION |
2.1. | Defining the scope of advanced Li-ion batteries |
2.2. | Trends in the Li-ion market |
2.3. | What is a Li-ion battery? |
2.4. | Li-ion cathode materials - LCO and LFP |
2.5. | Li-ion cathode materials - NMC, NCA and LMO |
2.6. | Li-ion anode materials - graphite and LTO |
2.7. | Li-ion anode materials - silicon and lithium metal |
2.8. | Li-ion electrolytes |
2.9. | Li-ion value chain (US$) |
3. | ANODES |
3.1. | Introduction |
3.1.1. | Types of lithium battery by anode |
3.1.2. | Anode materials discussion |
3.1.3. | Anode materials discussion |
3.1.4. | Strengths and weaknesses of anode materials |
3.1.5. | Li-ion anode materials compared |
3.1.6. | Silicon Anode Technology and Performance |
3.1.7. | Silicon Anode Market |
3.1.8. | Silicon Anode Player Profile Examples |
3.2. | Lithium-Metal Anodes |
3.2.1. | Introduction |
3.2.2. | Solid-state batteries and lithium metal anodes |
3.2.3. | Enabling Li-metal without solid-electrolytes |
3.2.4. | Li-metal anodes can increase battery energy density |
3.2.5. | Li-metal battery developers |
3.2.6. | SES |
3.2.7. | SES technology |
3.2.8. | SES cell performance |
3.2.9. | Sion Power |
3.2.10. | Sion Power technology |
3.2.11. | Applications for Li-metal |
3.2.12. | The need for thin and cheap lithium foils |
3.2.13. | Li-metal corp |
3.2.14. | Pure Lithium Corporation |
3.2.15. | Pure Lithium's Li-foil electrode production |
3.2.16. | Impact of Li-metal anodes on lithium demand |
3.2.17. | Anode-less cell design |
3.2.18. | Anode-less lithium-metal cell benefits |
3.2.19. | Anode-less lithium-metal cell developers |
3.2.20. | Hybrid batteries could enable anode-free use |
3.2.21. | High energy Li-ion anode technology overview |
3.2.22. | Example timelines |
3.2.23. | Concluding remarks on Li-metal anodes |
3.3. | Metal Oxide Anodes |
3.3.1. | Introduction to lithium titanate oxide (LTO) |
3.3.2. | Where will LTO play a role? |
3.3.3. | Comparing LTO and graphite |
3.3.4. | Commercial LTO comparisons |
3.3.5. | Metal oxide anodes |
3.3.6. | Lithium titanate to niobium titanium oxide |
3.3.7. | Niobium based anodes - Nyobolt |
3.3.8. | Echion Technologies |
3.3.9. | Vanadium oxide anodes - TyFast |
3.3.10. | Overview of LTO, niobium and vanadium based anodes |
4. | CATHODES |
4.1. | Introduction |
4.1.1. | Cathode introduction |
4.1.2. | Cathode technology executive summary |
4.1.3. | Advanced cathode outlook |
4.1.4. | Overview of Li-ion cathodes |
4.2. | High and Ultra-High Nickel NMC |
4.2.1. | High-nickel layered oxides definition and nomenclature |
4.2.2. | Benefits of high and ultra-high nickel NMC |
4.2.3. | High-Ni / Ni-rich cycle life and stability issues |
4.2.4. | Key issues with high-nickel layered oxides |
4.2.5. | Routes to high nickel cathode stabilisation |
4.2.6. | Routes to high-nickel cathodes |
4.2.7. | Single crystal cathodes |
4.2.8. | Single crystal performance |
4.2.9. | SM Lab single crystal cathodes |
4.2.10. | High-nickel CAM stabilisation |
4.2.11. | Umicore |
4.2.12. | EcoPro BM |
4.2.13. | SVolt |
4.2.14. | High-nickel products |
4.2.15. | Ultra-high nickel cathode timelines |
4.2.16. | Outlook on high-Ni - commentary |
4.3. | Zero-Cobalt NMx |
4.3.1. | Zero-cobalt NMx |
4.3.2. | NMA cathode |
4.3.3. | High-nickel NMA |
4.3.4. | Ultra-high nickel, zero-cobalt cathode |
4.3.5. | Extending mid-Ni voltage |
4.3.6. | Impact of high-voltage NMC operation |
4.3.7. | Impact of high-voltage operation |
4.4. | Lithium-Manganese-Rich (Li-Mn-Rich, LMR-NMC) |
4.4.1. | Lithium-manganese-rich, over-lithiated, LMR-NMC cathodes |
4.4.2. | Overview of Li-Mn-rich cathodes LMR-NMC |
4.4.3. | Stabilising lithium and manganese-rich |
4.4.4. | LMR-NMC energy density |
4.4.5. | Li-Mn-rich / lithium-manganese-rich / LMR-NMC cost profile |
4.4.6. | Commercial lithium-manganese-rich cathode development |
4.4.7. | Lithium-manganese-rich LXMO |
4.4.8. | Safety enhancements reported by Stratus |
4.4.9. | CAMX Power demonstrate high-Mn cathode |
4.4.10. | Umicore Mn-rich high-lithium-manganese cathode |
4.4.11. | Hybrid battery chemistry design for manganese-rich |
4.4.12. | Lithium-manganese-rich cathode developers |
4.4.13. | Lithium-manganese-rich cathode SWOT |
4.5. | LNMO |
4.5.1. | High-voltage spinel cathode LNMO |
4.5.2. | LNMO development |
4.5.3. | LNMO performance examples |
4.5.4. | LNMO energy density comparison |
4.5.5. | LNMO material intensity |
4.5.6. | Cathode chemistry impact on lithium consumption |
4.5.7. | LNMO cost impact |
4.5.8. | LNMO cathode SWOT |
4.6. | LMFP |
4.6.1. | Introduction to LMFP cathode material |
4.6.2. | Status of the LMFP market |
4.6.3. | Lithium manganese iron phosphate (LMFP) characteristics |
4.6.4. | LMFP comparison |
4.6.5. | LMFP energy density analysis |
4.6.6. | LMFP cost analysis |
4.6.7. | LMFP performance characteristics |
4.6.8. | Saft phosphate-based cathodes |
4.6.9. | Saft next generation products |
4.6.10. | Mitra Chem developing US-based L(M)FP production |
4.6.11. | Mitra Chem LMFP development |
4.6.12. | LMFP rate capability a potential issue |
4.6.13. | HCM's LMFP performance |
4.6.14. | HCM blended NMC/LMFP cells |
4.6.15. | LFMP battery performance |
4.6.16. | Reported LMFP cell performance |
4.6.17. | LFMP battery performance |
4.6.18. | LMFP cathode SWOT |
4.7. | LMFP Market Landscape |
4.7.1. | LMFP commercial development |
4.7.2. | LMFP cathode developers |
4.7.3. | LMFP performance outlook |
4.7.4. | LMFP outlook |
4.8. | Sulfur |
4.8.1. | Li-S executive summary |
4.8.2. | Introduction to lithium-sulfur (Li-S) batteries |
4.8.3. | Types of lithium battery |
4.8.4. | Operating principle of Li-S |
4.8.5. | Lithium-sulfur batteries - advantages |
4.8.6. | Li-S advantages and use cases |
4.8.7. | Challenges with lithium-sulfur |
4.8.8. | Polysulphide dissolution |
4.8.9. | Li-S challenges - poor sulfur utilisation and excess electrolyte |
4.8.10. | Energy density discussion |
4.8.11. | Engineering challenges to commercial Li-S |
4.8.12. | Solutions to Li-S challenges |
4.8.13. | Modelling Li-S energy density and cost |
4.8.14. | Modelling Li-S energy density |
4.8.15. | Li-S performance compared |
4.8.16. | Li-S performance characteristics compared |
4.8.17. | Li-S cost structure |
4.8.18. | Lithium-sulfur material composition |
4.8.19. | Lithium-sulfur material intensity and composition |
4.8.20. | Lithium intensity of Li-S batteries |
4.8.21. | Lithium-sulfur cost structure |
4.8.22. | Lithium-sulfur cost |
4.8.23. | Value proposition of Li-S batteries |
4.8.24. | Value chain and targeted markets |
4.8.25. | What markets exist for lithium sulfur batteries? |
4.8.26. | Academic lithium-sulfur activity |
4.8.27. | Recent Li-S academic highlights |
4.8.28. | Concluding remarks on Li-S |
4.9. | Companies |
4.9.1. | Recent Li-S developments |
4.9.2. | Li-S players |
4.9.3. | Lithium-sulfur players |
4.9.4. | Li-sulfur commercialisation |
4.9.5. | Lyten - background |
4.9.6. | Lyten - technology |
4.9.7. | Lyten - manufacturing |
4.9.8. | Zeta Energy |
4.9.9. | Gelion |
4.9.10. | Li-S Energy |
4.9.11. | Coherent Inc |
4.9.12. | NexTech |
4.9.13. | Polymer sulfur cathodes |
4.9.14. | Use of platinum group metals |
4.9.15. | theion |
4.9.16. | Oxis Energy - case study |
4.9.17. | Oxis Energy - battery performance |
4.10. | Alternative Cathode Production Routes |
4.10.1. | Introduction |
4.10.2. | Cathode production cost reduction opportunity |
4.10.3. | Alternative cathode synthesis routes |
4.10.4. | Conventional NMC synthesis |
4.10.5. | Conventional LFP synthesis |
4.10.6. | Dry cathode synthesis |
4.10.7. | Alternative synthesis routes |
4.10.8. | 6K Inc |
4.10.9. | 6K Energy technology |
4.10.10. | Nano One |
4.10.11. | Nano One Materials technology |
4.10.12. | Sylvatex |
4.10.13. | Novonix |
4.10.14. | Novonix cathode technology |
4.10.15. | HiT Nano |
4.10.16. | HiT Nano technology |
4.10.17. | Xerion |
4.10.18. | Xerion cathode |
4.10.19. | eJoule background |
4.10.20. | Tesla CAM production plans |
4.10.21. | Cathode synthesis environmental impact |
4.10.22. | Alternative cathode production companies |
4.10.23. | New cathode synthesis outlook |
4.10.24. | Recycled cathodes |
4.10.25. | Cathode recycling developments |
4.10.26. | Recycled CAM |
4.11. | Conclusions |
4.11.1. | Concluding remarks on cathode development |
4.11.2. | Cathode chemistry impact on lithium consumption |
4.11.3. | Key cathode material developments overview |
4.11.4. | Future cathode prospects |
4.11.5. | Future cathode technology overview |
4.11.6. | Cathode comparisons |
4.11.7. | Cathode comparisons |
4.11.8. | Player advanced cathode technologies |
4.11.9. | Advanced cathode material players |
4.11.10. | Cathode material addressable markets |
5. | SOLID-STATE BATTERIES |
5.1. | State of SSB development |
5.2. | Executive summary on solid-state batteries |
5.3. | Introduction to solid-state batteries |
5.4. | Classifications of solid-state electrolyte |
5.5. | Comparison of solid-state electrolyte systems |
5.6. | Solid-state electrolyte technology approach |
5.7. | Analysis of SSB features |
5.8. | Summary of solid-state electrolyte technology |
5.9. | Current electrolyte challenges and solutions |
5.10. | Solid electrolyte material comparison |
5.11. | SSB company commercial plans |
5.12. | Solid state battery collaborations /investment by Automotive OEMs |
5.13. | Location overview of major solid-state battery companies |
5.14. | Technology summary of various companies |
5.15. | Silicon anodes and solid-state batteries |
5.16. | SSB with silicon anode - Solid Power |
5.17. | SSB with silicon anode performance |
5.18. | Blue Current |
5.19. | WeLion semi-solid battery patent case study (1) |
5.20. | WeLion semi-solid battery patent case study (2) |
5.21. | Pack considerations for SSBs |
6. | CELL AND BATTERY DESIGN |
6.1. | Cell Design and Inactive Materials |
6.1.1. | 4680 tabless cell |
6.1.2. | Increasing cell sizes |
6.1.3. | Bipolar cell design |
6.1.4. | Thick format electrodes |
6.1.5. | Thick format electrodes - 24m |
6.1.6. | Dual electrolyte Li-ion |
6.1.7. | Multi-layer electrodes - EnPower |
6.1.8. | Impact of multi-layer electrode design |
6.1.9. | Prieto's 3D cell design (1/2) |
6.1.10. | Prieto's 3D cell design (2/2) |
6.1.11. | Addionics 3D current collector |
6.1.12. | Electrolyte decomposition |
6.1.13. | Electrolyte additives 1 |
6.1.14. | Electrolyte additives 2 |
6.1.15. | Electrolyte additives 3 |
6.1.16. | Electrolyte developments |
6.1.17. | Electrolyte patent topic comparisons - key battery players |
6.1.18. | Electrolyte patent topic comparisons - key electrolyte players |
6.1.19. | Carbon nanotubes in Li-ion |
6.1.20. | Key Supply Chain Relationships |
6.1.21. | Results showing impact of CNT use in Li-ion electrodes |
6.1.22. | Results showing SWCNT improving in LFP batteries |
6.1.23. | Improved performance at higher C-rate |
6.1.24. | Significance of dispersion in energy storage |
6.1.25. | Graphene coatings for Li-ion |
6.2. | Evolving Cell Performance |
6.2.1. | Energy density by cathode |
6.2.2. | BEV cell energy density trend |
6.2.3. | Cell energy density trend |
6.2.4. | Cell performance specification examples |
6.2.5. | Cell specifications (2022-2030) |
6.2.6. | Comparing commercial cell chemistries |
6.3. | Battery Packs and BMS |
6.3.1. | What is Cell-to-pack? |
6.3.2. | Cell-to-pack or modular? |
6.3.3. | Drivers and Challenges for Cell-to-pack |
6.3.4. | What is Cell-to-chassis/body? |
6.3.5. | BYD Blade battery |
6.3.6. | CATL cell-to-pack |
6.3.7. | Cell-to-pack and cell-to-body designs summary |
6.3.8. | Gravimetric energy density and cell-to-pack ratio |
6.3.9. | Volumetric energy density and cell-to-pack ratio |
6.3.10. | Outlook for Cell-to-pack & cell-to-body designs |
6.3.11. | Bipolar batteries |
6.3.12. | Bipolar-enabled CTP |
6.3.13. | ProLogium: "MAB" EV battery pack assembly |
6.3.14. | Electric vehicle hybrid battery packs |
6.3.15. | CATL hybrid Li-ion and Na-ion pack concept |
6.3.16. | CATL hybrid pack designs |
6.3.17. | Our Next Energy |
6.3.18. | High energy plus high cycle life |
6.3.19. | Nio's dual-chemistry battery |
6.3.20. | Nio's design to improve thermal performance |
6.3.21. | Nio hybrid battery operation |
6.3.22. | Hybrid battery + supercapacitor |
6.3.23. | Concluding remarks on hybrid batteries |
6.3.24. | BMS introduction |
6.3.25. | Functions of a BMS |
6.3.26. | Improvements to battery performance from BMS development |
6.3.27. | Innovations in BMS |
6.3.28. | Advanced BMS activity |
6.3.29. | Impact of fast-charging |
6.3.30. | Fast charging protocols |
6.3.31. | BMS solutions for fast charging |
6.3.32. | Development of wireless BMS |
6.3.33. | Wireless BMS pros and cons |
6.3.34. | Concluding remarks on BMS development |
7. | FORECASTS |
7.1. | Total addressable markets |
7.2. | Addressable markets by technology |
7.3. | Power range of electrical and electronic devices |
7.4. | Addressable markets - electric car types |
7.5. | Li-ion battery contribution to device bill of materials |
7.6. | Examples of new technology entry |
7.7. | Application battery performance priorities |
7.8. | Total addressable markets (GWh) |
7.9. | Total addressable markets forecast data (GWh) |
7.10. | BEV car cathode forecast (GWh) |
7.11. | BEV cathode forecast (GWh) |
7.12. | EV cathode forecast (GWh) |
7.13. | Silicon anode forecast methodology |
7.14. | BEV anode forecast (GWh) |
7.15. | BEV anode forecast (kt, US$B) |
7.16. | EV Anode forecast (GWh) |
7.17. | On-road EV Anode forecast (GWh) |
7.18. | Off-road EV |
7.19. | Consumer devices Anode forecast (GWh) |
7.20. | Advanced anode forecast (GWh, kt, US$B) |
7.21. | Advanced anode forecast (GWh) |
7.22. | Advanced anode forecast (kt, US$B) |
8. | COMPANY PROFILES |
8.1. | 6K Energy |
8.2. | Addionics |
8.3. | Addionics: Use of Machine Learning Methods |
8.4. | Beijing WeLion New Energy Technology |
8.5. | Blue Solutions |
8.6. | CAMX Power: New Cathode Platforms |
8.7. | CENS Materials |
8.8. | Coreshell |
8.9. | Daejoo Electronic Materials |
8.10. | E-magy |
8.11. | Eatron Technologies |
8.12. | Enovix |
8.13. | Forge Nano |
8.14. | GDI |
8.15. | Group14 Technologies |
8.16. | HiT Nano |
8.17. | IBU-tec Advanced Materials AG |
8.18. | Ionblox |
8.19. | Iontra |
8.20. | LeydenJar Technologies |
8.21. | Lyten: Developing Lithium-Sulfur |
8.22. | Nanoramic Laboratories |
8.23. | Nexeon |
8.24. | NIO (Battery) |
8.25. | Novonix |
8.26. | OneD Battery Sciences |
8.27. | Our Next Energy (ONE) |
8.28. | Shanghai Putailai |
8.29. | Shenzhen Dynanonic |
8.30. | Sicona Battery |
8.31. | Sila Nanotechnologies |
8.32. | South 8 Technologies |
8.33. | StoreDot: Battery Development AI |
8.34. | Stratus Materials |
8.35. | Sylvatex |
8.36. | theion: Developing Lithium-Sulfur Batteries Using Crystalline Wafers |
8.37. | WAE Technologies |
8.38. | Xerion Advanced Battery Corp |