This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

Graphene, 2D Materials and Carbon Nanotubes: Markets, Technologies and Opportunities 2019-2029

Granular ten-year market forecasts, data-driven and quantitative application assessment, 40+ interview-based company profiles, revenue/investment/capacity by player, and more

Show All Description Contents, Table & Figures List Pricing Related Content
This report offers a detailed analysis of the technological and commercial progress as well as prospects of graphene, carbon nanotubes and non-graphene 2D materials.
This grouping of material technologies makes sense because graphene and CNTs, despite their morphological differences, have much in common; whilst non-graphene 2D materials promise to offer complementary properties.
Why IDTechEx for research on graphene, carbon nanotube and non-graphene 2D materials?
This report is the result of years of ongoing research. We launched the first version of our report on CNTs and graphene in 2011 and 2012, respectively. In addition to the initial research, we have organized 13 business-focused events on topic ourselves in Europe and USA; we have also since attended and/or lectured at 10 relevant non-IDTechEx conferences in Asia, Europe and USA; we have interviewed more than 140 players worldwide; we have delivered 12 masterclasses to business leaders; and we have completed 7 major consulting projects. All this gives us an excellent and unrivalled insight into these industries.
Another unique point for strength for us is that we have extensive in-depth coverage of the end-use markets for these materials. Indeed, we have a series of independent reports on such topics. This expertise on the end-use markets enables us to better understand the landscape in which these materials compete.
Carbon nanotubes: a brief overview
CNTs are almost thirty years old already. In this time, they have gone through almost the entire hype curve, rising from their academic origins toward their peak of hype before nearly disappearing into the valley of disillusionment. CNTs have however been making a quiet comeback and have now indeed entered a phase of volume growth.
As in graphene and many other similar carbon additive materials, there is no single type of CNT but there are many. The diameter of on-market CNTs range from near 1nm to several hundred, taking the CNTs from being singled-walled (SWCNT) towards multi-walled (MWCNTs) and carbon nanofibers. Similarly, the tube lengths range from few micro meters all the way to 2 millimetres.
Each of these CNTs is a different material: it is produced differently; it is processed differently, and it is used differently. This diversity is also reflected in prices which cover nearly six orders of magnitude (from highest cost SWCNT to lowest cost MWCNT).
Evolution of MWCNT markets: quietly entering the volume growth phase
MWCNTs are mainly produced using the C-CVD process (catalytic chemical vapor deposition). The evolution of accumulated global production for MWCNTs is shown below. Note here that the commercialization efforts start around 2005/2006. The super hype then sets in, leading to a rush to install capacity. This pushes the industry into a state of overcapacity, and still worse, pushes many to produce a CNT that is not good enough to meaningfully displace carbon black or similar.
As a result, faced with disappointing prospects, some leave the business, leading to some correction in overall capacity. The global capacity then generally remains constant as some enter and leave. Importantly however, the utilization rate slowly begins to rise.
Our analysis is now that the market has entered a period of volume growth. MWCNT use in conductive plastic applications is now well established and is expanding. It is also being added to new polymers like elastomers. More importantly, it is being used more in batteries. This is more important because the battery market is an escalator market in that it itself is poised for rapid growth thanks to uptake of electric vehicles demanding large batteries operating in high charge-discharge regimes.
In general, like most carbon-based materials, CNTs have diverse target markets, giving resilience to their prospects. The growth in demand, we assess, will manifest itself soon as increased capacity. This process already begun when a multi-hundred-tonne facility came online in Asia a little over a year ago. This trend will continue.
Left: historical and projected price evolution of MWCNTs as a function time. The exact values have been removed in this figure but you can see that prices were reduced by nearly a factor of 100. Right: global accumulated production capacity as a function time, telling the story of the market evolution. Source: IDTechEx Research
Like graphene, CNTs are often a substitute additive. As such, they must compete on price and performance against the reference market values set by the incumbent. This gives rise to a perennial downward cost pressure. The industry has therefore had no choice but to cut cost of production. And in that regard, it has had good success.
This is shown in the chart here too showing the price evolution of CNTs. The blue dots show historic prices whilst red ones are our future projections: the learning curve is steep with prices having fallen by two orders of magnitude.
This competition on price and volume has largely commoditized the MWCNT supply business. We however do not mean that all differences in material quality have disappeared since many varieties of MWCNTs are on the market. The differences in quality, depending on application, will manifest themselves as small price differentials enabling the market to retain some of its speciality chemical character.
SWCNT become more available and affordable?
The CNT story is not all about MWCNTs. Indeed, SWCNT have superior performance on an individual tube basis given their higher surface-to-volume ratio. They are however more difficult and expensive to grow, come as mixed metallic and semiconducting types, and are much harder to disperse even though the wt% levels involved for the same or better effect might be much lower. These three attributes have combined to keep its market limited to some niche electronic devices.
Some companies are now seeking to change this by offering a more affordable and available SWCNT. Price and volume leaders are emerging, hoping to push SWCNTs closer to high-performance MWCNT in their market positioning. These SWCNT may compete with MWCNT as a substitute in some applications, but, more interestingly, they will open new applications despite their moderate-to-high impurity levels (in the as-grown versions).
One interesting application is that they can enable coloured (vs. black) conductive adhesives owing to their ultra-low loading levels. We assess that this and similar SWCNT will first find markets where they deliver this type of additional value to customer as they still cannot compete on cost directly.
Graphene: Finally moving out of the lab and into the market?
Graphene is also going through its own hype curve. It is arguably now in that disillusionment valley. Graphene commercialization is however making steady progress. This can be summarized in the key trend below:
  • Increasing industry experience: In the early days graphene was oversold as a wonder material or a magic dust that would overnight revolutionize just about every industry. Naturally, with time, realism has set in. Today, graphene platelets are increasingly, and rightly, viewed as part of the expansive continuum of carbon additive materials.
Furthermore, the market now realizes that there are many graphene materials and not all are equal. As such, the users now accept that the winning materials cannot be determined a priori as final application-level results are influenced by many parameters such as graphene morphology and formulation/compounding technique and conditions.
  • Increasing availability: Graphene has diverse useful properties and as a result a diverse application pipeline. Most target applications however are volume markets. Therefore, suppliers have had to take the risk to invest in sizable production in the face of small and uncertain demand. This has been inevitable because otherwise suppliers could never progress past the phase of prototyping or performance demonstration. This process (of installing capacity) has made such significant progress worldwide that availability, in the medium term, is not a major industry concern.
Interesting, and as now is familiar in many industries, China has become the leading territory in terms of nominal production capacity. Its rise to prominence has also made direct liquid phase exfoliation the leading process by share of production capacity. This is because many Chinese producers were not part of the first wave of graphene companies who relied upon the then-available rGO process.
  • Increasing affordability: Similar to CNTs, graphene is largely a substitute material. As such, it must compete on price as well as performance with incumbent solutions. As a new specialty material, graphene suffered from high and divergent (by orders of magnitude) prices and pricing strategies.
This has changed. Graphene platelet prices have fallen and are beginning to converge, for now. The prices will however not settle around a single point, reflecting the diversity of graphene types and giving it a speciality chemical character. Furthermore, suppliers will be reluctant to further cut costs out of fear of premature commoditization although the continuation of this trend has an air of inevitability to it.
  • Increasing revenue and volume sales progress: Our data suggest that income at the graphene company level has been rising steadily since 2013. This rise, which is reflected largely across the board, will continue at similar rates until 2020/21 around which time our model suggests an inflection point will occurs, putting the market into its rapid volume growth phase.
  • This rise in revenue however has not been always accompanied with increasing profit. In fact, the opposite is often true in that losses have grown in line with revenues. Indeed, the industry, as a whole, is still loss making despite the existence of several profitable companies.
This is no surprise but is likely to soon change. Experience has demonstrated that new materials take years, if not decades, to commercialize. Graphene is also no exception therefore this behaviour is in our view a natural part of growth process of the industry.
We forecast that a circa. $300M market, at the material supply level, will be formed within the next ten years. Since graphene is still largely an additive material, this means that we will find graphene, of different types, in numerous volume applications in the years to come. This success, it is worth remembering, will not have come overnight but will have been the results of almost two decades of steadfast global research and commercialization efforts.
Non-graphene 2D materials?
These materials are still largely in the academic phase. They however hold enormous long-term promise in that they can complement the properties of graphene. They can, for example, add insulating or semiconducting (with sizable bandgaps) 2D materials to the menu of material options. In this report, we will outline some of the latest progress here in particular focusing on the need they serve in future electronic applications.
What does this report provide?
This report provides the following:
Introduction and business dynamics/trends
  • Disparity between ideal and non-ideal graphene and CNTs
  • Diversity of graphene and various CNT morphologies on the market
  • Pricing evolutions, trends and strategies worldwide for graphene and various CNTs
  • Nominal production capacity by supplier worldwide for graphene and various CNTs
  • Categorization of graphene and CNT manufacturers by production processes
  • Various trends such as publication, patent filing, etc
  • Trends in company revenue and profit/loss
  • Companies valuation trends
  • Specific look on China (for graphene) covering key emerging Chinese suppliers, applications and prices
  • Applications examples, pipeline and readiness levels for graphene and CNTs
Ten-year segmented market forecasts
  • Ten-year application-segmented market projections for graphene (platelet and film) in tonnes and value.
Here, we cover energy storage (li ion, silicon anode, LiS, supercapacitor and other); composites (mechanically-enhanced, permeation-enhanced, conductive, thermal, EMI shielding, conductive 3D printing filaments, tire, other); inks and coatings (anti-corrosion coating, RFID antenna, other); transistors, transparent conductive films, thermal interface materials and so on.
  • Ten-year application-segmented market projections for MWCNTs in tonnes and value
Here we cover electric vehicle and consumer electronic Li ion batteries, supercapacitors, CNT additives for automotive fuel lines and car body part painting, CNTs for IC trays and similar; other conductive polymer; non-tire rubber additives; tire additives; thin film transistors; transparent conductive films; cable screen shield; and cable replacement.
  • Ten-year application-segmented market projections for SWCNT/FWCNT in tonnes and value. Here we cover the same application as above.
Review of production processes
  • Graphene: rGO, direct liquid phase exfoliation, plasma, substrate-less CVD, substrate-based CVD and transfer (film type)
  • Carbon nanotubes: laser ablation, arc discharge, catalytic chemical vapour deposition, vertically-aligned growth, etc
Application assessment
  • Conductive inks: performance position vs metallic and carbon inks and results-based review of applications such as heating, EMI shielding coatings/films, UV-protecting films, anti-corrosion coatings, RFID antennas, printed sensor electrodes, and so on
  • Supercapacitors: Analysis of supercapacitor devices and their applications; review of results based on graphene and CNTs; assessment of remaining challenges; and overview of various electrode chemistries on the market based on patent analysis
  • Batteries: assessment of the need and challenges in various battery technologies (Li ion, silicon anode Li ion, Li sulphur, etc) and results-based review of role of graphene and CNTs in various batteries as both anode and cathode additives
  • Polymer composites: role of graphene and CNTs as multi-functional (thermal, conductive, permeation, strength enhancement etc) additives in polymers and results-based review of their impact in various polymeric hosts such as PS, PET, PET, ABS, PP, PMMA, PDMS, Epoxy, PC, PI, HDPS, and so on.
  • Other applications including transparent conducting films (with a special focus on film-type CVD graphene), sensors, transistors (with a special focus on 2D materials), tires, water filtration, memory, and so on.
Here we provide interview-based insights into 140 companies. For a full list see the table of content below.
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
Further information
If you have any questions about this report, please do not hesitate to contact our report team at or call one of our sales managers:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.1.Not all graphenes are equal: diversity is intrinsic to the material system
1.2.Trade-offs involved between different production processes
1.3.Explaining the main graphene manufacturing routes
1.4.Quantitative mapping of graphene morphologies on the market (lateral size vs thickness)
1.5.Does anyone mass product true graphene
1.6.The hype curve of the graphene industry
1.7.Graphene suppliers categorised by production process (direct exfoliation, rGO, CVD(powder), Plasma, CVD (film), etc.)
1.8.Trends in publications for graphene and other 2D materials
1.9.Large scale investment in graphene research
1.10.Revenue of graphene companies
1.11.Profit and loss trend of graphene companies
1.12.Value creation for graphene companies: a look at public valuation trends
1.13.The rise of China in graphene (production capacity figures of Chinese graphene manufacturers)
1.14.Patent trends for graphene: past peak activity?
1.15.Top 15 patent holders: dominance of Asia is clear
1.16.Graphite mines see opportunity in graphene
1.17.Graphene platelet-type: global production capacity by company
1.18.Graphene platelet-type: global production capacity by region
1.19.The importance of intermediaries
1.20.Graphene prices by suppliers
1.21.Price indication of alternatives
1.22.Quality and consistency issue
1.23.Graphene platelet/powder-based conductors: conductive inks
1.24.Graphene platelet-based conductors: polymer composites
1.25.Graphene: LFP cathode improvement
1.26.Graphene applications going commercial?
1.27.Graphene products and prototypes
1.28.Graphene-enabled sports equipment
1.29.Graphene enabled lithium ion batteries
1.30.Graphene-enabled supercapacitors
1.31.Graphene-enabled lead acid battery
1.32.Graphene-enhanced conductive 3D printing filaments
1.33.Graphene-enabled bike tires
1.34.Graphene-enabled RFIDs and flexible interconnects
1.35.Graphene in thermal management
1.36.Heating applications
1.37.Graphene-enabled anti-corrosion applications
1.38.ESD films
1.39.Graphene-enabled stretch sensor applications
1.40.Graphene-enabled textile applications
1.41.Graphene-enabled vehicle tire
1.42.Graphene-enabled conductive adhesives and inks
1.43.Graphene-enabled guitar strings and lubricants
1.44.Graphene-enabled transparent conducting film applications
1.45.Graphene-enabled stretch sensor applications
1.46.Introduction to Carbon Nanotubes (CNT)
1.47.CNTs: ideal vs reality
1.48.Not all CNTs are equal
1.49.Price position of CNTs (from SWCNT to FWCNT to MWCNT)
1.50.Price evolution: past, present and future (MWCNTs)
1.51.Production capacity of CNTs globally
1.52.The evolution of accumulated global production capacity from 2016 to 2018
1.53.CNTs: value proposition as an additive material
1.54.CNT: snapshot of market readiness levels of CNT applications
1.55.CNT-polymer composite: performance levels in different polymers
1.56.Conductive plastics: application examples
1.57.Graphene vs. Carbon nanotubes: general observations
2.1.Granular ten year graphene market forecast segmented by 21 application areas
2.2.Ten-year application-segmented graphene market forecast
2.3.Ten-year forecast for graphene platelet vs sheets
2.4.Granular snapshot of the graphene market in 2019
2.5.Granular snapshot of the graphene market in 2029
2.6.Ten-year forecast for volume (MT) demand for graphene platelets
2.7.Ten-year market forecast for MWCNTs segmented by 16 applications in value
2.8.Ten-year market forecast for MWCNTs segmented by 16 applications in tonnes
2.9.Ten-year market forecast for SWCNTs/DWCNTs segmented by application in value
2.10.Ten-year market forecast for SWCNTs/DWCNTs segmented by application in tonnes
3.1.The rise of China in graphene (production capacity figures)
3.2.SuperC Technology Limited: Already making headway in energy storage
3.4.Knano: Revenue and P/L
3.5.Ningbo Morsh: one of the largest graphene producers?
3.6.2D Carbon (Changzhou)Ltd
3.7.2D Carbon (Changzhou)Ltd: Revenue and P/L
3.8.Sixth Element
3.9.Sixth Element: success in anti-corrosion and heat spreaders?
3.10.Sixth Element: material properties
3.11.Sixth Element: also CVD film?
3.12.Sixth Element: Revenue and P/L
3.13.Ningbo Soft Carbon Electronics: R2R CVD graphene growth and transfer
3.14.Wealtech/MITBG: Graphene as heating element
3.15.Tungshu (Dongxu Optoelectronic Technology)
3.16.Deyang Carbonene: Exfoliated graphene for heating
3.17.2D Graphtherm
3.18.Haike (subsidiary of Shandon One New Materials)
3.19.Other companies: ENN, Nanjing SCF Nanotech Ltd, Hongsong Technology
3.20.Other companies: Liaoning Mote Graphene Technology, Shandon Yuhuang New Energy Technology, Changsha Research Institute of Mining & Metallurgy
4.1.Expanded graphite
4.2.Reduced graphene oxide
4.3.Oxidising graphite: processes and characteristics
4.4.Reducing graphene oxide: different methods
4.5.Direct liquid phase exfoliation: process and characteristics
4.6.Direct liquid phase exfoliation under shear force
4.7.Electrochemical exfoliation
4.8.Properties of electrochemical exfoliated graphene
4.9.Plasma exfoliation
4.10.Substrate-less Plasma
4.11.Substrate-less CVD (chemical vapour deposition)
4.12.Substrate-less CVD: growth of flower like graphene
5.1.Producing graphene as an electronic substrate or material
5.2.Chemical Vapour Deposited (CVD) Graphene
5.3.Growth process of CVD graphene
5.4.The key role of oxygen in CVD graphene growth
5.5.CVD graphene: cm scale grain domains possible
5.6.Roll to roll (R2R) growth of CVD graphene film
5.7.The transfer challenge: a showstopper?
5.8.Roll-to-roll transfer of CVD graphene
5.9.Novel methods for transferring CVD graphene
5.10.Using R2R joule heating to enable CVD growth
5.11.Epitaxial: high performance but high cost
5.12.Largest single-crystalline graphene reported ever
5.13.Graphene from SiC
5.14.Improving graphene from SiC epitaxy
5.15.Metal on silicon CVD (then transfer)
5.16.Transfer-FREE metal on Si graphene
5.17.SINGLE CRYSTAL wafer scale graphene on silicon!
5.18.Different production processes (laser ablation and arc discharge)
5.19.Different production processes (catalytic CVD)
5.20.Different production processes (wafer or sheet based catalytic growth)
5.21.Varieties of vertically-aligned pure CNTs
5.22.Benchmarking of different CNT production processes
6.1.Pictures of graphene materials
6.2.Pictures of CNT materials
7.1.Graphene platelet/powder-based conductors: conductive inks
7.2.Applications of conductive graphene inks
7.3.Results of resistive heating using graphene inks
7.4.Heating applications
7.5.Uniform and stable heating
7.6.Results of de-frosting using graphene inks
7.7.Results of de-icing using graphene heaters
7.8.Transparent EMI shielding
7.9.ESD films printed using graphene
7.10.Graphene UV shielding coatings
7.11.Graphene inks can be highly opaque
7.12.RFID types and characteristics
7.13.UV resistant tile paints
7.14.Graphene RFID tags: already a success story?
7.15.Overview of RFID antennas
7.16.Overview of the general RFID antenna market figures
7.17.Cost breakdown of RFID tags
7.18.Methods of producing RFID antennas
7.19.Graphene in glucose test strips
7.20.Printed glucose: what is it?
7.21.Anatomy of a test strip: one example
7.22.Profitability in the test strip industry is falling
7.23.Big four test strip manufacturers are changing to counter decreasing profitability
7.24.Market projections for glucose test strips
7.25.Heat spreader, thermal interface materials, and heat sinks
7.26.Graphene in thermal management: application roadmap
7.27.Graphene heat spreaders: commercial success
7.28.Graphene heat spreaders: performance
7.29.Graphene heat spreaders: academic results
7.30.Graphene heat spreaders: suppliers multiply
7.31.Graphene heat spreaders: combination with copper
7.32.Graphene thermal interface materials (TIM)
7.33.Graphene: heat conductivity boosters
8.1.Supercapacitors: what are they?
8.2.Supercapacitors: attributes and energy/power density positioning
8.3.Supercapacitors: extended cycle life
8.4.Application pipeline for supercapacitors
8.5.Cost structure of a supercapacitor
8.6.Cost breakdown of supercapacitors
8.7.Supercapacitor electrode mass and cost in transport applications
8.8.Why graphene in supercapacitors?
8.9.Challenges with graphene: surface area is far from the ideal case
8.10.Challenges with graphene: poor out-of-plane conductivity and re-stacking
8.11.Nanocarbons in supercapacitors: pushing the performance envelope
8.12.Promising results on GO supercapacitors
8.13.Promising results on graphene supercapacitors
8.14.Skeleton Technologies' graphene supercapacitors
8.15.Performance of carbon nanotube supercapacitors
8.16.Potential benefits of carbon nanotubes in supercapacitors
8.17.Binder-free CNT film as supercapacitor electrode
8.18.Challenges with the use of carbon nanotubes
8.19.Electrode chemistries of supercapacitor suppliers
9.1.Historical progress in Li ion batteries
9.2.Electrode mass by battery type
9.3.Cost breakdown of Li ion batteries
9.4.Why nanocarbons in Li batteries
9.5.Why graphene and carbon black are used together
9.6.LFP cathode improvement (PPG Industry)
9.7.Results showing graphene improves LFP batteries (Graphene Batteries)
9.8.Results showing graphene improves NCM batteries (Cabot Corp)
9.9.Results showing graphene improves LiTiOx batteries
9.10.Results showing CNT improves the performance of commercial Li ion batteries (Showa Denko)
9.11.Results showing SWCNT improving in LFO batteries (Ocsial)
9.12.Mixed graphene/CNT in batteries
10.1.Why Silicon anode batteries?
10.2.Overview of Si anode battery technology
10.3.Why silicon anode battery and key challenges?
10.4.Graphene's role in silicon anodes
10.5.Why graphene helps in Si anode batteries: results and strategies
10.6.State of the art results in silicon-graphene anode batteries
10.7.State of the art in silicon-graphene anode batteries (PPG Industries)
10.8.State of the art in silicon-graphene anode batteries (XG Sciences and SiNode)
10.9.State of the art in silicon-graphene anode batteries (CalBatt)
10.10.Samsung's result on Si-graphene batteries
10.11.State of the art in silicon-graphene anode batteries
11.1.Motivation - Why Lithium Sulphur batteries?
11.2.The Lithium sulphur battery chemistry
11.3.Why graphene helps in Li sulphur batteries
11.4.State of the art in use of graphene in Li Sulphur batteries
11.5.State of the art in use of graphene in Li Sulphur batteries (Oxis Energy/Perpetuus Advanced Materials)
11.6.State of the art use of graphene in Li Sulphur batteries (Lawrence Berkeley National Laboratory)
11.7.Graphene battery announcement (Grabat)
11.8.Yuhuang's graphene-enabled battery
12.1.General observation on using graphene additives in composites
12.2.Graphene platelet-based conductors: polymer composites
12.3.Commercial results on graphene conductive composites (Nylon 66): the impact of aspect ration
12.4.Graphene as conductive additive in Polyester and PET
12.5.Graphene as conductive additive in PMDS, Natural Rubber and Epoxy
12.6.Graphene as conductive additive in PUA, PC, PDMS
12.7.Conductivity improvement in HDPE
12.8.EMI Shielding: graphene additives in epoxy
12.9.Results showing Young's Modulus enhancement using graphene
12.10.Commercial results on permeation graphene improvement
12.11.Permeation Improvement
12.12.Commercial results on thermal conductivity improvement using graphene
12.13.Thermal conductivity improvement using graphene
12.14.Selection of Graphene related slides from the report: Multifunctional Composites
12.15.Role of nanocarbon as additives to FRPs
12.16.Routes to incorporating nanocarbon material into composites
12.17.Routes to electrically conductive composites
12.18.Technology adoption for electrostatic discharge of composites
12.19.Nanocarbon for enhanced electrical conductivity - Graphene
12.20.Enhanced thermal conductivity - application overview
12.21.Electrothermal de-icing - Nanocarbon patents
12.22.Electrothermal de-icing - Graphene research
12.23.Nanocomposites for enhanced thermal conductivity - graphene
12.24.Embedded sensors for structural health monitoring of composites - introduction
12.25.Embedded sensors for structural health monitoring of composites - types
12.26.Nanocarbon Sensors for embedded SHM
13.1.How do CNTs do in conductive composites
13.2.MWCNTs as conductive additives
13.3.Summary of CNT as polymer composite conductive additive
13.4.Summary of CNT as polymer composite conductive additive
13.5.CNT success in conductive composites
13.6.Examples of products that use CNTs in conductive plastics
13.7.Tensile strength: Comparing random vs aligned CNT dispersions in polymers
13.8.Elastic modulus: Comparing random vs aligned CNT dispersions in polymers
13.9.Thermal conductivity: using CNT additives
14.1.Graphene as additive in tires
14.2.Progress on graphene-enabled bicycle tires
14.3.Carbon black in tires
14.4.Black carbon in car tires
14.5.Mapping of different carbon black types on the market
14.6.CNT and graphene are the least ready emerging tech for tire improvement
14.7.Results on use of graphene in silica loaded tires
14.8.Comments on CNT and graphene in tires
14.9.Total addressable market for graphene in tires
15.1.Transparent conducting films (TCFs)
15.2.Different Transparent Conductive Films (TCFs)
15.3.ITO film assessment: performance, manufacture and market trends
15.4.ITO film shortcomings: flexibility
15.5.ITO film shortcomings: limited sheet conductivity
15.6.ITO films: current prices (2018)
15.7.Indium's single supply risk: real or exaggerated?
15.8.Silver nanowire transparent conductive films: principles
15.9.Silver nanowire transparent conductive films: performance levels and value proposition
15.10.Silver nanowire transparent conductive films: flexibility
15.11.Metal mesh transparent conductive films: operating principles
15.12.Metal mesh: photolithography followed by etching
15.13.Fujifilm's photo-patterned metal mesh TCF
15.14.Embossing/Imprinting metal mesh TCFs
15.15.Komura Tech: improvement in gravure offset printed fine pattern (<5um) metal mesh TCF ?
15.16.Graphene performance as TCF
15.17.Doping as a strategy for improving graphene TCF performance
15.18.Be wary of extraordinary results for graphene
15.19.Graphene transparent conducting films: flexibility
15.20.Graphene transparent conducting films: thinness and barrier layers
15.21.Wuxi Graphene Film Co's CVD graphene progress
15.22.LG Electronics: R2R CVD graphene targeting TCFs?
15.23.Ningbo Soft Carbon Electronics: R2R CVD graphene growth and transfer
15.24.2D Carbon (Changzhou)Ltd: Moving away from CVD type graphene film?
15.25.Other players
16.1.Carbon nanotube transparent conductive films: performance
16.2.Carbon nanotube transparent conductive films: performance of commercial films on the market
16.3.Carbon nanotube transparent conductive films: matched index
16.4.Carbon nanotube transparent conductive films: mechanical flexibility
16.5.Carbon nanotube transparent conductive films: stretchability as a key differentiator for in-mould electronics
16.6.Example of 3D touch-sensing surface with CNTs
16.7.Example of wearable device using CNT
16.8.Key players
17.1.Quantitative benchmarking of different TCF technologies
17.2.Technology comparison
17.3.2018-2028 Market forecasts segmented by 10 technologies (value)
18.1.Graphene GFET sensors
18.2.Fast graphene photosensor
18.3.Graphene humidity sensor
18.4.Optical brain sensors using graphene
18.5.Graphene skin electrodes
18.6.Wearable stretch sensor using graphene
19.1.Anti-corrosion coating
19.2.Imagine Intelligent Textiles geotextile graphene
19.3.Water filtration
19.4.Lockheed Martin's water filtration
19.5.Nantero/Fujitsu CNT memory
19.6.Lintec NTSC CNT sheets
19.7.Future applications
20.2.Transistor Figures-of-Merit (transfer characteristics)
20.3.Transistor Figures-of-Merit (output characteristics)
20.4.Why graphene transistors?
20.5.First graphene FET with top gate (CMOS)- 2007
20.6.High performance top gate FET
20.7.Graphene FET with bandgap
20.8.Opening a bandgap: e-field induced bandgap bilayer graphene
20.9.Opening bandgap: No free lunch!
20.10.Graphene wafer scale integration
20.11.Graphene IC (2011)
20.12.Can graphene FETs make it as an analogue high frequency device?
20.13.Why the limited fmax?
20.14.So what if we print graphene? Poor competition gives hope!
20.15.Fully inkjet printed 2D material FETs
20.16.Fully inkjet printed 2D material FETs on TEXTILE
20.17.Fully inkjet printed on-textile 2D material logic!
20.18.Summary and Conclusions
20.19.2D Materials beyond graphene
20.20.2D materials beyond graphene: a GROWING family!
20.21.A range of two materials exist with bandgaps!
20.22.And many of them are layered materials
20.23.TMDs or Transition Metal Dichalcogenides: key material characteristics
20.24.Introduction to TMDs
20.25.MoS2: a basic introduction
20.26.MoS2: crystal arrangements
20.27.MoS2: Raman behaviour
20.28.MoS2: Photoluminescence behaviour
20.29.MoS2: change in band structure from bulk to 2D
20.30.Other 2D materials actually work: top gate FET
20.31.Other 2D materials actually work: phototransistor
20.32.Production of 2D TMD platelets
20.33.TMDs: production beyond scotch tape process
20.34.Exfoliation non-graphene 2D materials from stacked bulk materials
20.35.LPE step 1: exfoliating layered materials into sheets
20.36.LPE step 2: stabilising exfoliated sheets
20.37.LPE step 3 (optional): separating/sorting exfoliated sheets
20.38.Liquid phase exfoliation: examples of exfoliated TMDs
20.39.Family of solution processible 2D materials
20.40.Full printed flexible FET with a high On/off?
20.41.Growing TMD films or wafer scale layers
20.42.MoS2 CVD growth: first steps
20.43.MoS2 CVD growth: towards large area and more uniformity
20.44.MoS2 CVD growth: towards large area and more uniformity
20.45.Wafer scale uniform TMD growth
20.46.Wafer scale uniform TMD growth: a look at growth conditions
20.47.Uniform high mobility wafer-scale 2D FETs
20.48.Buy from 2D Materials Shop
20.49.MoS2: Direct growth on PI
20.50.Are 2D TMDs interesting as electronic materials?
20.51.Why use TMDs at all if mobility not outstanding?
20.52.The point of 2D materials as transistors: 5nm gate & beyond?
20.53.The point of 2D materials as transistors: large area flexible TFTs?
20.54.Summary and conclusion
21.1.2D Carbon Graphene Material Co., Ltd
21.2.2D Graphtherm
21.3.Abalonyx A
21.4.Advanced Graphene Products
21.5.Advanced Microstructures Limited
21.7.Airbus Group Innovations Singapore
21.9.Alpha Assembly Solutions
21.10.AMO GmbH
21.11.Anderlab Technologies Pvt. Ltd
21.12.Angstron Materials
21.13.Applied Graphene Materials
21.15.Atomic Mechanics Ltd
21.18.Bayer MaterialScience AG
21.19.Birla Carbon
21.20.Bluestone Global Tech
21.23.Brewer Science
21.24.BTU International
21.25.C2Sense, Inc
21.27.Cabot Corporation
21.28.Cambridge Graphene Centre
21.30.Carbon Waters
21.32.Changsha Research Institute of Mining and Metallurgy
21.33.Chasm (formerly SouthWest NanoTechnologies, Inc)
21.35.CNano Technology
21.36.CNM Technologies GmbH
21.37.CPI Graphene Centre
21.39.Daejoo Electronic Materials Co., Ltd
21.41.Deyang Carbonene Technology Co. Ltd
21.42.Dimension Inx
21.43.Directa Plus
21.45.Enerize Corporation
21.47.FGV Cambridge Nanosystems
21.48.First Graphene
21.51.Garmor Inc
21.52.General Graphene
21.53.Global Graphene Group
21.55.GNext s.a.s
21.56.Grafen Chemical Industries
21.60.Graphene 3D Lab
21.61.Graphene Batteries
21.62.Graphene Devices
21.63.Graphene Frontiers
21.64.Graphene Square
21.65.Graphene Technologies, Inc
21.67.Grapheneca (formerly Nano Graphene Inc)
21.69.Grupo Antolin Ingenieria
21.71.Haydale Limited
21.73.Hitachi Zosen
21.74.Hongsong Technology
21.76.IIT / Bedimensional
21.77.Incubation Alliance
21.78.JC Nano
21.79.JEIO Co Ltd
21.80.Jinan Moxi New Material Technology
21.81.KH Chemicals
21.82.LG Chem
21.83.Liaoning Mote Graphene
21.84.Lockheed Martin
21.85.London Graphene Ltd
21.86.Minnesota Wire
21.88.N12 Technologies
21.89.Nanjing JCNANO Technology
21.90.Nanjing SFC Nanotech
21.94.Nanomedical Diagnostics
21.97.Ningbo Morsh
21.98.Ningbo Soft Carbon Electronics
21.101.Perpetuus Advanced Materials
21.103.PPG Industries
21.104.Pyrograf Products
21.105.Raymor Industries Inc / PPG Industries
21.107.Shandom Yuhuang New Energy Technology
21.108.Showa Denko K.K
21.109.SiNode Systems
21.110.Skeleton Technologies
21.111.Solan PV
21.113.Spirit Aerosystem
21.114.Standard Graphene
21.115.Super C Technology Ltd
21.116.Talga Resources Ltd
21.117.Tata Steel
21.118.The Graphene Corporation
21.119.The Sixth Element
21.120.Thomas Swan & Co. Ltd
21.122.Toray Industries
21.123.Tortech nano fibers
21.124.True 2 Materials
21.125.Tungshu (Dongxu Optoelectronic Technology
21.126.Unidym Inc
21.127.University of Exeter
21.128.USDA Forest Product Laboratory
21.130.Vorbeck Materials
21.132.William Blythe Ltd
21.133.Wuxi Graphene Film
21.134.XFNANO (Nanjing XFNANO Materials Tech Co.,Ltd)
21.135.XG Sciences, Inc
21.136.Xiamen Knano Graphene Technology Co.,Ltd
21.137.XinNano Materials Inc
21.138.Xolve, Inc

Report Statistics

Slides 404
Companies 138
Forecasts to 2029

Subscription Enquiry