This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | Introduction: defining AR, MR, VR and XR |
1.2. | Applications in VR, AR & MR |
1.3. | Optics and AR/MR/VR Devices |
1.4. | Motivation - why are XR optics important? |
1.5. | XR headsets: state of the market in 2022 |
1.6. | Classifying headsets |
1.7. | Overall AR and VR headset market forecast (device volume) |
1.8. | Overall AR and VR headset market forecast (revenue) |
1.9. | XR headsets: Optical technology choices |
1.10. | The AR/MR optics technology landscape |
1.11. | AR combiners: Promising technological candidates |
1.12. | Status and market potential of optical combiners |
1.13. | Wide FoV AR combiner technology forecast (adoption proportions) |
1.14. | Narrow FoV AR combiner technology forecast (adoption proportions) |
1.15. | AR combiner technology players |
1.16. | AR/MR: Ancillary lenses for waveguides |
1.17. | Everyone wants a chunk of the metaverse: Big Tech entry into the AR/MR market |
1.18. | The VR optics technology landscape |
1.19. | Technological status of VR lens technologies |
1.20. | VR lenses: the winning technological solutions |
1.21. | VR lens technology forecast (adoption proportions) |
1.22. | Lens technology players: VR and ancillary AR lenses |
1.23. | Major headset OEMs |
1.24. | Optics revenue forecasts |
1.25. | AR/MR combiners: key technological takeaways |
1.26. | Ancillary lenses for waveguides: key technological takeaways |
1.27. | VR lenses: key technological takeaways |
2. | INTRODUCTION TO VR/AR/MR |
2.1. | Introduction: defining AR, MR, VR and XR |
2.2. | AR, MR, VR and XR: a brief history |
2.3. | The 2010s to date - the age of XR begins |
2.4. | XR nomenclature - a source of confusion |
2.5. | XR nomenclature used in this report |
2.6. | Nomenclature confusion: AR, MR and smartglasses |
2.7. | Further confusion: passthrough and see-through AR |
2.8. | Gauging interest: Google search trends |
2.9. | AR, MR and VR - market development |
2.10. | The VR market is consolidating |
2.11. | Applications in VR, AR & MR |
2.12. | The "metaverse" - hype or the new shape of the internet? |
2.13. | Industry 4.0 and XR |
2.14. | VR/AR solutions for Industry 4.0 |
2.15. | Optical requirements for XR |
2.16. | AR/MR vs. VR optics: development status and design considerations |
2.17. | How the human eye understands space |
2.18. | Defining field of view (FoV) - a key consideration for XR optics |
2.19. | Eyebox and eye relief: keys to XR usability |
2.20. | An immersive experience requires a wide field of view (FoV) - but is this always necessary? |
2.21. | Field of view for different headsets |
2.22. | No free lunches: etendue, FoV and eyebox |
2.23. | Transmission and eye glow - measures of AR's social acceptability |
2.24. | Optical aberrations present design challenges |
2.25. | The vergence-accommodation conflict |
2.26. | Optical 'building blocks' of an AR system |
2.27. | Potential Big Tech entries to the AR market (I) |
2.28. | Potential Big Tech entries to the AR market (II) |
2.29. | Bytedance and Pico - late to the metaverse race? |
2.30. | VR headsets: major OEMs |
2.31. | AR/MR headsets: major OEMs |
3. | OVERALL MARKET FORECASTS |
3.1. | Forecasting methodology |
3.1.1. | Methodology - device and component forecasts |
3.1.2. | Material requirement forecasting methodology |
3.1.3. | Methodology - material forecasting |
3.2. | Headset and overall optics forecasts |
3.2.1. | Overall AR and VR headset market forecast (device volume) |
3.2.2. | Overall AR and VR headset market forecast (revenue) |
3.2.3. | Overall AR and VR headset market forecast tables |
3.2.4. | Optics revenue forecasts |
3.2.5. | Optics revenue forecasts |
3.3. | Component forecasts |
3.3.1. | Notes on component forecasts |
3.3.2. | Wide FoV AR combiner technology forecast (adoption proportions) |
3.3.3. | Wide FoV AR combiner technology forecast (headset volume) |
3.3.4. | Wide FoV AR combiner technology forecast (adoption proportions) |
3.3.5. | Wide FoV AR combiner volume forecast by technology - headset volumes |
3.3.6. | Narrow FoV AR combiner technology forecast (adoption proportions) |
3.3.7. | Narrow FoV AR combiner technology forecast (headset volume) |
3.3.8. | Narrow FoV AR combiner technology forecast (adoption proportions) |
3.3.9. | Narrow FoV AR combiner lens volume forecast by technology - headset units |
3.3.10. | Total AR combiner technology forecast (adoption proportions) |
3.3.11. | Total AR combiner technology forecast (headset volume) |
3.3.12. | Total AR combiner technology forecast (adoption proportions) |
3.3.13. | Total FoV AR combiner lens volume forecast by technology - headset units |
3.3.14. | Total AR combiner revenue forecast |
3.3.15. | Total AR combiner revenue forecast |
3.3.16. | VR lens technology forecast (adoption proportions) |
3.3.17. | VR lens technology forecast (headset volume) |
3.3.18. | VR lens technology forecast (adoption proportions) |
3.3.19. | VR lens volume forecast by technology (headset volume) |
3.3.20. | VR lens revenue forecast |
3.3.21. | VR lens revenue forecast |
3.4. | Material forecasts (high-level) |
3.4.1. | Material requirement forecasting methodology |
3.4.2. | Material forecasts (volume): AR combiners (wide and narrow FoV combined) |
3.4.3. | Material forecasts (mass): AR combiners (wide and narrow FoV combined) |
3.4.4. | Material forecasts (volume): AR combiners (wide and narrow FoV combined) |
3.4.5. | Material forecasts (mass): AR combiners (wide and narrow FoV combined) |
3.4.6. | AR combiners: identifying material opportunities (I) |
3.4.7. | AR combiners: identifying material opportunities (II) |
3.4.8. | AR combiners: identifying material opportunities (III) |
3.4.9. | Material forecasts (volume): VR lenses |
3.4.10. | Material forecasts (mass): VR lenses |
3.4.11. | Material forecasts (volume): VR lenses |
3.4.12. | Material forecasts (mass): VR lenses |
3.4.13. | Material forecasting: assumptions for geometric phase lens arrays |
3.4.14. | VR lenses: identifying material opportunities (I) |
3.4.15. | VR lenses: identifying material opportunities (II) |
3.4.16. | VR lenses: identifying material opportunities (III) |
4. | TECHNOLOGY ASSESSMENT: OPTICAL COMBINERS/WAVEGUIDES |
4.1. | Introduction to waveguide/combiner technologies |
4.1.1. | The AR/MR optics technology landscape |
4.1.2. | Optical combiners: definition and classification |
4.1.3. | Common waveguide architectures |
4.1.4. | Common waveguide architectures: Operating principle and device examples |
4.1.5. | Common waveguides architectures: the influence of eyebox size |
4.1.6. | Waveguide substrate materials (I) |
4.1.7. | Waveguide substrate materials (II) |
4.1.8. | Comparison between waveguide methodologies |
4.1.9. | Big Tech and AR: All-in on diffractive waveguides? |
4.1.10. | Trouble at Microsoft? The future of Hololens devices and possible usage of holographic waveguides |
4.1.11. | Big Tech and AR: What about Meta? |
4.1.12. | Magic Leap: Back for round 2? |
4.1.13. | The industry landscape for optical combiners |
4.2. | Reflective/geometric waveguides |
4.2.1. | Introduction: reflective (geometric) waveguides |
4.2.2. | Reflective waveguides - benefits and drawbacks |
4.2.3. | Reflective waveguides: Manufacturing |
4.2.4. | Reflective waveguides: development potential |
4.2.5. | Summary: Current vs. potential future performance of reflective waveguides |
4.2.6. | Reflective Waveguides: SWOT Analysis |
4.3. | Diffractive waveguides |
4.3.1. | Introduction: diffractive waveguides |
4.3.2. | Diffractive waveguides: method of operation |
4.3.3. | Challenges of handling multiple colors with diffractive waveguides |
4.3.4. | Surface relief diffractive waveguides in Microsoft's HoloLens 2: ambitious design, unfortunate issues |
4.3.5. | The first commercial holographic waveguide: the Sony SED-100A |
4.4. | Surface relief gratings (SRG) |
4.4.1. | Introduction: surface relief grating waveguides |
4.4.2. | Surface relief waveguide example: HoloLens 1 |
4.4.3. | Microsoft's butterfly waveguide combiner |
4.4.4. | Surface relief grating waveguide example: Magic Leap 1 |
4.4.5. | Manufacturing techniques for surface relief grating waveguides |
4.4.6. | Manufacturing techniques for SRG waveguides: the next step |
4.4.7. | Manufacturing techniques for SRG waveguides: the next step |
4.4.8. | Wafer-scale alternatives to nano-imprint lithography |
4.4.9. | Manufacturing SRG waveguides - direct etching for high refractive index materials |
4.4.10. | Manufacturing SRGs - the future of direct etching |
4.4.11. | Diffractive Waveguides (SRG): SWOT Analysis |
4.5. | Volumetric holographic gratings (VHG) |
4.5.1. | Introduction: Volume holographic grating waveguides |
4.5.2. | Switchable holographic waveguides for resolution expansion |
4.5.3. | Fabricating volume holographic waveguides |
4.5.4. | Diffractive Waveguides (VHG): SWOT Analysis |
4.6. | Other combiner technologies |
4.6.1. | Freespace holographic optical element (HOE) combiners |
4.6.2. | HOE combiners: SWOT analysis |
4.6.3. | Conventional reflective combiners |
4.6.4. | Conventional reflective combiners - what use cases make sense? |
4.6.5. | Birdbath optics |
4.6.6. | Birdbath combiners: SWOT analysis |
4.6.7. | Bugeye combiners: SWOT analysis |
4.6.8. | Prism combiners: SWOT analysis |
4.6.9. | Pin mirror combiners |
4.6.10. | Pin mirror combiners: SWOT analysis |
4.7. | Combiners/waveguides: Technology benchmarking and adoption proportions |
4.7.1. | Benchmarking methodology: combiners/waveguides |
4.7.2. | Technology benchmarking: criteria for combiners |
4.7.3. | Tech benchmarking: AR combiners |
4.7.4. | AR combiners: weighted average benchmarking scores |
4.7.5. | The future of waveguide technology |
4.7.6. | Status and market potential of optical combiners |
4.7.7. | Optical combiners - what attributes are important? |
4.7.8. | Comparing waveguide types: 2022 vs. 2032 |
4.7.9. | Manufacturability of waveguides - why is this expected to change? |
4.7.10. | Why reflective waveguides are likely dominate for immersive consumer AR/MR |
4.7.11. | What about non-waveguide combiners? |
4.7.12. | Forecasting adoption proportion for AR combiner technologies |
4.7.13. | Forecast dominant technologies: wide FoV AR/MR |
4.7.14. | Forecast dominant technologies: narrow FoV AR/MR |
4.7.15. | Wide FoV AR combiner technology forecast (adoption proportions) |
4.7.16. | Narrow FoV AR combiner technology forecast (adoption proportions) |
4.7.17. | Total AR combiner technology forecast (adoption proportions) |
4.8. | Waveguides/combiners: Company profiles |
4.8.1. | AR combiner technology players |
4.8.2. | Lumus: Company overview |
4.8.3. | Lumus: SWOT Analysis |
4.8.4. | Optinvent: Company overview |
4.8.5. | Optinvent: SWOT Analysis |
4.8.6. | DigiLens: Company overview (I) |
4.8.7. | DigiLens: Company overview (II) |
4.8.8. | DigiLens: SWOT Analysis |
4.8.9. | Mira: Company overview |
4.8.10. | Mira: SWOT Analysis |
4.8.11. | TruLife Optics: Company overview |
4.8.12. | TruLife Optics: SWOT Analysis |
4.8.13. | Kura Technologies: Company Overview |
4.8.14. | Kura Technologies: SWOT Analysis |
4.8.15. | Vuzix: Company Overview |
4.8.16. | Vuzix: SWOT Analysis |
4.8.17. | Luminit/Holoptic: Company Overview (I) |
4.8.18. | Luminit/Holoptic: Company Overview (II) |
4.8.19. | Luminit/Holoptic: SWOT Analysis |
4.8.20. | WaveOptics: Company overview |
4.8.21. | WaveOptics/Snap: SWOT Analysis |
4.8.22. | LetinAR: Company overview |
4.8.23. | LetinAR: SWOT Analysis |
4.8.24. | NReal: Company overview |
4.8.25. | NReal: SWOT Analysis |
4.8.26. | NEDGlass: Company overview |
4.8.27. | NEDGlass: SWOT Analysis |
4.8.28. | Dispelix: Company Overview |
4.8.29. | Dispelix: SWOT Analysis |
4.8.30. | Lochn Optics: Company Overview |
4.8.31. | Lochn Optics: SWOT Analysis |
4.8.32. | ImagineOptix: Company Overview |
4.8.33. | Akonia - acquired by Apple |
4.9. | Ancillary lenses for waveguides |
4.9.1. | The AR/MR optics technology landscape |
4.9.2. | Why encapsulate waveguides with lenses? |
4.9.3. | Ancillary lenses fill gaps in waveguide capabilities |
4.9.4. | Static accommodation adjustment |
4.9.5. | Prescription correction: 3D printing offers an elegant solution |
4.9.6. | Correcting the vergence-accommodation conflict |
4.10. | Ancillary lenses for waveguides: company profiles |
4.10.1. | Luxexcel: Company Overview |
4.10.2. | Luxexcel: SWOT Analysis |
4.10.3. | Deep Optics: Company Overview |
4.10.4. | Deep Optics: SWOT Analysis |
5. | TECHNOLOGY ASSESSMENT: LENSES |
5.1. | Introduction to VR lens technologies |
5.1.1. | The VR optics technology landscape |
5.1.2. | Lenses in VR |
5.2. | Established lenses: Fresnel lenses and conventional lenses |
5.2.1. | Fresnel Lenses vs. Singlets |
5.2.2. | Meta (Facebook)-patented hybrid Fresnel lens |
5.2.3. | Fresnel doublets |
5.2.4. | Users modifying headsets |
5.2.5. | Fresnel lenses: SWOT analysis |
5.3. | Emerging lens architectures |
5.3.1. | Where can emerging architectures offer value? |
5.3.2. | Emerging lens technologies by TRL |
5.3.3. | The vergence-accommodation conflict |
5.3.4. | Solutions to the vergence-accommodation conflict for VR |
5.3.5. | SWOT: VA conflict solutions (I) |
5.3.6. | SWOT: VA conflict solutions (II) |
5.4. | Geometric/Pancharatnam-Berry phase lenses |
5.4.1. | Introduction to geometric phase lenses |
5.4.2. | Flat lenses: diffractive optics, metasurfaces, liquid crystals and more |
5.4.3. | Why geometric phase lenses matter |
5.4.4. | What is geometric (Pancharatnam-Berry) phase? |
5.4.5. | Optically anisotropic materials and GPLs |
5.4.6. | Liquid crystals and switchable waveplates |
5.4.7. | Liquid crystals in GPLs |
5.4.8. | Metasurfaces: another method to apply geometric phase |
5.4.9. | Introduction to optical meta-surfaces |
5.4.10. | Harvard: Manufacturing optical metamaterials |
5.4.11. | Harvard: Applications for metalenses/metasurfaces |
5.4.12. | MetaLenz: Metasurfaces for distributing light and imaging |
5.4.13. | MetaLenz: Manufacturing metasurfaces via semiconductor fabrication |
5.4.14. | Metamaterial Technologies develop rolling mask lithography |
5.4.15. | Geometric phase lenses for VR and AR: production methods |
5.5. | Other emerging lens architectures |
5.5.1. | Polarization-based pancake lenses |
5.5.2. | Devices using pancake lenses |
5.5.3. | Tunable liquid crystal lenses |
5.5.4. | Meta/Oculus: combining emerging lens technologies |
5.6. | Lenses: technology benchmarking and adoption proportions |
5.6.1. | Benchmarking methodology |
5.6.2. | Lens technology benchmarking: criteria (I) |
5.6.3. | Lens technology benchmarking (II): special criterion |
5.6.4. | Tech benchmarking: VR lenses |
5.6.5. | VR lenses: weighted average benchmarking scores |
5.6.6. | Benchmarking: conclusions to inform forecasting |
5.6.7. | VR lens technology forecast (adoption proportions) |
5.6.8. | VR lens forecasting justification |
5.6.9. | Lenses: Company profiles |
5.6.10. | Lynx: Company overview (I) |
5.6.11. | Lynx: Company overview (II) |
5.6.12. | Lynx: SWOT Analysis (focusing on optics) |
5.6.13. | Limbak: Company overview |
5.6.14. | Limbak: SWOT Analysis |
5.6.15. | Kopin: Company overview |
5.6.16. | Kopin: SWOT Analysis |
5.6.17. | Metamaterial Technologies: Company overview |
5.6.18. | Metamaterial Technologies: SWOT Analysis |
6. | OPTICAL MATERIALS FOR XR |
6.1.1. | Key material opportunities in AR/VR |
6.1.2. | Advanced optical plastics - high volume with clear opportunities for innovation |
6.1.3. | Liquid crystal photopolymer materials - specialized materials for a new paradigm in optics |
6.1.4. | Photopolymers - enabling low-cost AR |
6.1.5. | Optic coatings in VR and AR |
6.1.6. | Anti-reflective coatings |
6.1.7. | Beam-splitter coatings |
6.1.8. | Metal mirror coatings |
6.1.9. | Companies: Optical Coatings |
6.2. | Materials: Company profiles |
6.2.1. | Inkron: Company overview |
6.2.2. | Inkron: SWOT Analysis |
6.2.3. | SCHOTT AG: Company overview |
6.2.4. | SCHOTT AG: SWOT Analysis |
6.2.5. | Denton Vacuum |
6.2.6. | AccuCoat inc |
6.2.7. | Optics Balzers |
Slides | 313 |
---|---|
Forecasts to | 2032 |
ISBN | 9781915514011 |