This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

Potential Stationary Energy Storage Technologies to Monitor

Emerging technologies for front-of-meter applications: Gravitational Energy Storage, Compressed Air Energy Storage, Liquified Air Energy Storage, and Thermal Energy Storage. Forecast 2020-2030, Technologies, Markets and Players.

Show All Description Contents, Table & Figures List FAQs Pricing Related Content
Introduction to mechanical energy storage:
When talking about energy storage it is now common to think about Li-ion batteries, due to their success in the automotive sector, portable electronic devices, and stationary applications. In the last few years Li-ion batteries started to be constantly adopted in stationary energy storage with a power output of few kWs up to MWs scale. Although a powerful device, their application can hardly cover the entire range of power and energy demanded by the electricity grid. If one end is dominated by Li-ion batteries, on the other end, pumped hydro energy storage is the reference system to deliver large power output, and store large amounts of energy able to generate electricity for days. Pumped hydro energy storage was the first large power plant built to generate electricity, and still nowadays is the reference technology for large power output.
 
Between these two main technologies, a number of new technologies with a power output of tens of MWs are currently approaching the market. In the new report released: "Potential Stationary Energy Storage to Monitor", IDTechEx investigated this new group of technologies aiming to address MWs of power output and long storage time.
 
The technologies defined as mechanical energy storage include different types of technologies, all of them characterised by a large power output from MW size, and a simple mechanical working principles. Among them:
  • Gravitational Energy Storage
  • Compressed Air Energy Storage
  • Liquid Air Energy Storage
 
 
Power and storage capacity comparison of different technologies
These technologies are based on simple mechanical working principles, which allow them to employ well known components, like pumps, ventilators, cranes, and do not employ dangerous materials. A simple working principle implies high round-trip efficiencies, in most cases close to 80%. Finally, differently from electrochemical systems, mechanical energy storage systems are not affected by self-discharge, allowing them to store electricity for an indefinite amount of time.
 
Large amounts of energy, similarly to mechanical energy storage systems, could also be stored by hydrogen and ammonia. Storing electricity as chemical energy implies the adoption of other technologies like fuel cells, which strongly affect the overall efficiency of the system.
 
The growing interest in the renewable energies, driven by the necessity to decarbonise the electricity market, is leading to a growing adoption of energy storage devices. While renewable electricity sources allow us to reduce polluting emissions, their variable nature requires extra systems to adjust the timing of energy production and energy consumption. In addition, the adoption of renewable energies is leading to an upgrade of the electricity grid, shifting the power grid from a centralised model, to decentralised energy production. Therefore, the role of energy storage is constantly growing, and with it the technologies involved.
 
 
Report content:
Due to growing interest in energy storage devices, in particular for grid application, IDTechEx releases the new report titled: "Potential Stationary Energy Storage to Monitor", introducing an emerging group of technologies.
 
The report begins with an introduction about the electricity grid, explaining the role of energy storage systems, and the market these devices can address. In the following chapters, the different mechanical energy storage technologies are investigated. For each technology the working principle is initially explained, followed by an analysis of the main companies involved, showing the main advantages and disadvantages of the systems analysed. Moreover, the executive summary provides the reader with a comparison of the different technologies, showing the different TRL (technology readiness level) and MRL (manufacturing readiness level) of the technologies analysed in the report. A comparison of mechanical energy storage with Li-ion batteries and redox flow batteries allows the reader to appreciate the differences between these technologies. In conclusion, a market forecast for the period 2020-2030, in terms of installed power, energy and market size is provided, together with the technology breakdown.
 
 
Market forecast, and market forecast breakdown - IDTechEx Source
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
Further information
If you have any questions about this report, please do not hesitate to contact our report team at research@IDTechEx.com or call one of our sales managers:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
1.EXECUTIVE SUMMARY
1.1.A Growing Energy Storage Market
1.2.High Potential ES Technologies: Overview
1.3.High Potential ES Technologies: Properties
1.4.High Potential ES Technologies: Technology Segmentation
1.5.Which technology will dominate the market?
1.6.High Potential ES Technologies: Properties Comparison
1.7.High Potential ES Technologies analysis
1.8.Technology/Manufacturing Readiness Level: definitions
1.9.Technology/Manufacturing Readiness Level
1.10.Why not Li-ion or Redox Flow batteries?
1.11.Comparison of energy storage devices
1.12.Market Forecast
1.13.Forecast technology breakdown
1.14.Forecast Methodology
1.15.Forecast Assumptions
2.THE ELECTRICITY GRID AND THE ROLE OF ENERGY STORAGE
2.1.Renewable Energies: Energy generated and cost trend
2.2.The increasingly important role of stationary storage
2.3.Stationary energy storage is not new
2.4.Why We Need Energy Storage
2.5.Energy Storage Devices
2.6.Energy Storage Classification
2.7.ESS, BESS, BTM, FTM
2.8.Stationary Energy Storage Markets
2.9.New avenues for stationary storage
2.10.Incentives for energy storage
2.11.Overview of ES drivers
2.12.Renewable energy self-consumption
2.13.ToU Arbitrage
2.14.Feed-in-Tariff phase-outs
2.15.Net metering phase-outs
2.16.Demand Charge Reduction
2.17.Other Drivers
2.18.Values provided at the customer side
2.19.Values provided at the utility side
2.20.Values provided in ancillary services
3.GRAVITATIONAL ENERGY STORAGE (GES)
3.1.1.Gravitational Energy Storage (GES)
3.1.2.Calculation from Gravitricity technology
3.1.3.Piston Based GES - Energy Stored example
3.1.4.GES Technology Classification
3.1.5.Can the GES reach the market?
3.1.6.Chapter 3. Overview
3.2.ARES
3.2.1.ARES LLC Technology Overview
3.2.2.ARES Technologies: Traction Drive, Ridgeline
3.2.3.Technical Comparison: Traction Drive, Ridgeline
3.2.4.A considerable Landscape footprint
3.2.5.ARES Market, and Technology analysis
3.3.Piston Based Gravitational Energy Storage (PB-GES)
3.3.1.Energy Vault - Technology working principle
3.3.2.Energy Vault - Brick Material
3.3.3.Energy Vault Technology and market analysis
3.3.4.Gravitricity - Piston-based Energy storage
3.3.5.Gravitricity technology analysis
3.3.6.Mountain Gravity Energy Storage (MGES): Overview
3.3.7.Mountain Gravity Energy Storage (MGES): Analysis
3.4.Underground - Pumped Hydro Energy Storage (U-PHES)
3.4.1.Underground - PHES:
3.4.2.U-PHES - Gravity Power
3.4.3.U-PHES - Heindl Energy
3.4.4.Detailed description of Heindl Energy technology
3.4.5.U-PHES - Heindl Energy
3.4.6.Underground - PHES: Analysis
3.5.Underwater Energy Storage (UWES)
3.5.1.Under Water Energy Storage (UWES)
3.5.2.Under Water Energy Storage (UWES) - Analysis
4.COMPRESSED AIR ENERGY STORAGE (CAES)
4.1.CAES Historical Development
4.2.CAES Technologies overview
4.3.Drawbacks of CAES
4.4.Diabatic Compressed Energy Storage (D-CAES)
4.5.Huntorf D-CAES - North of Germany
4.6.McIntosh D-CAES - US Alabama
4.7.Adiabatic - Compressed Air Energy Storage (A-CAES)
4.8.A - CAES analysis
4.9.Isothermal - Compressed Air Energy Storage (I - CAES)
4.10.Main players in CAES technologies
4.11.CAES Players and Project
5.LIQUID AIR ENERGY STORAGE (LAES)
5.1.Liquid Air Energy Storage
5.2.The Dawn of Liquid Air in the Energy Storage Market
5.3.Sumitomo Industries invests in Highview Energy
5.4.Hot and Cold Storage Materials:
5.5.Industrial Processes to Liquify Air
5.6.LAES Historical Evolution
5.7.LAES Companies and Projects
5.8.LAES Players
5.9.LAES Analyst analysis
6.THERMAL ENERGY STORAGE (TES)
6.1.TES Technology Overview and Classification
6.2.Diurnal TES Systems - Domestic application
6.3.Diurnal TES Systems - Solar Thermal Power Plants (CSP)
6.4.Seasonal and long-duration TES Systems
6.5.Seasonal TES Systems - Underground TES
6.6.Seasonal TES Systems - Solar Ponds
7.COMPANY PROFILES
 

About IDTechEx reports

What are the qualifications of the people conducting IDTechEx research?

Content produced by IDTechEx is researched and written by our technical analysts, each with a PhD or master's degree in their specialist field, and all of whom are employees. All our analysts are well-connected in their fields, intensively covering their sectors, revealing hard-to-find information you can trust.

How does IDTechEx gather data for its reports?

By directly interviewing and profiling companies across the supply chain. IDTechEx analysts interview companies by engaging directly with senior management and technology development executives across the supply chain, leading to revealing insights that may otherwise be inaccessible.
 
Further, as a global team, we travel extensively to industry events and companies to conduct in-depth, face-to-face interviews. We also engage with industry associations and follow public company filings as secondary sources. We conduct patent analysis and track regulatory changes and incentives. We consistently build on our decades-long research of emerging technologies.
 
We assess emerging technologies against existing solutions, evaluate market demand and provide data-driven forecasts based on our models. This provides a clear, unbiased outlook on the future of each technology or industry that we cover.

What is your forecast methodology?

We take into account the following information and data points where relevant to create our forecasts:
  • Historic data, based on our own databases of products, companies' sales data, information from associations, company reports and validation of our prior market figures with companies in the industry.
  • Current and announced manufacturing capacities
  • Company production targets
  • Direct input from companies as we interview them as to their growth expectations, moderated by our analysts
  • Planned or active government incentives and regulations
  • Assessment of the capabilities and price of the technology based on our benchmarking over the forecast period, versus that of competitive solutions
  • Teardown data (e.g. to assess volume of materials used)
  • From a top-down view: the total addressable market
  • Forecasts can be based on an s-curve methodology where appropriate, taking into account the above factors
  • Key assumptions and discussion of what can impact the forecast are covered in the report.

How can I be confident about the quality of work in IDTechEx reports?

Based on our technical analysts and their research methodology, for over 25 years our work has regularly received superb feedback from our global clients. Our research business has grown year-on-year.
 
Recent customer feedback includes:
"It's my first go-to platform"
- Dr. Didi Xu, Head of Foresight - Future Technologies, Freudenberg Technology Innovation
 
"Their expertise allows us to make data-driven, strategic decisions and ensures we remain aligned with the latest trends and opportunities in the market."
- Ralf Hug, Global Head of Product Management & Marketing, Marquardt

What differentiates IDTechEx reports?

Our team of in-house technical analysts immerse themselves in industries over many years, building deep expertise and engaging directly with key industry players to uncover hard-to-find insights. We appraise technologies in the landscape of competitive solutions and then assess their market demand based on voice-of-the-customer feedback, all from an impartial point of view. This approach delivers exceptional value to our customers—providing high-quality independent content while saving customers time, resources, and money.

Why should we pick IDTechEx research over AI research?

A crucial value of IDTechEx research is that it provides information, assessments and forecasts based on interviews with key people in the industry, assessed by technical experts. AI is trained only on content publicly available on the web, which may not be reliable, in depth, nor contain the latest insights based on the experience of those actively involved in a technology or industry, despite the confident prose.

How can I justify the ROI of this report?

Consider the cost of the IDTechEx report versus the time and resources required to gather the same quality of insights yourself. IDTechEx analysts have built up an extensive contact network over many years; we invest in attending key events and interviewing companies around the world; and our analysts are trained in appraising technologies and markets.
 
Each report provides an independent, expert-led technical and market appraisal, giving you access to actionable information immediately, rather than you having to spend months or years on your own market research.

Can I speak to analysts about the report content?

All report purchases include up to 30 minutes of telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

What is the difference between a report and subscription?

A subscription from IDTechEx can include more reports, access to an online information platform with continuously updated information from our analysts, and access to analysts directly.

Before purchasing, I have some questions about the report, can I speak to someone?

Please email research@idtechex.com stating your location and we will quickly respond.

About IDTechEx

Who are IDTechEx's customers?

IDTechEx has served over 35,000 customers globally. These range from large corporations to ambitious start-ups, and from Governments to research centers. Our customers use our work to make informed decisions and save time and resources.

Where is IDTechEx established?

IDTechEx was established in 1999, and is headquartered in Cambridge, UK. Since then, the company has significantly expanded and operates globally, having served customers in over 80 countries. Subsidiary companies are based in the USA, Germany and Japan.

Questions about purchasing a report

How do I pay?

In most locations reports can be purchased by credit card, or else by direct bank payment.

How and when do I receive access to IDTechEx reports?

When paying successfully by credit card, reports can be accessed immediately. For new customers, when paying by bank transfer, reports will usually be released when the payment is received. Report access will be notified by email.

How do I assign additional users to the report?

Users can be assigned in the report ordering process, or at a later time by email.

Can I speak to someone about purchasing a report?

Please email research@idtechex.com stating your location and we will quickly respond.
 
Emerging technologies with a forecasted market value of $1.7 billion in 2030.

Report Statistics

Slides 120
Forecasts to 2030
 

Customer Testimonial

quote graphic
"The resources provided by IDTechEx, such as their insightful reports and analysis, engaging webinars, and knowledgeable analysts, serve as valuable tools and information sources... Their expertise allows us to make data-driven, strategic decisions and ensures we remain aligned with the latest trends and opportunities in the market."
Global Head of Product Management and Marketing
Marquardt GmbH
 
 
 
ISBN: 9781913899059

Subscription Enquiry