1. | EXECUTIVE SUMMARY |
1.1. | Report Introduction |
1.2. | Electric Car Forecasts (Unit Sales) |
1.3. | Power Electronics in Electric Vehicles |
1.4. | Power Electronics Device Ranges |
1.5. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
1.6. | 800V and SiC Benefits |
1.7. | Semiconductor Content Increased |
1.8. | SiC Supply Chain |
1.9. | Automotive Power Module Market Shares |
1.10. | SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales) |
1.11. | 800V - 1000V Inverter Forecast (2022-2032) |
1.12. | SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW) |
1.13. | Onboard Charger Forecast by Power Level 2022- 2032 |
1.14. | Inverter, OBC, LV Converter Forecast (GW) to 2032 |
1.15. | Automotive Power Electronics Market Size by Device ($ bn) |
1.16. | Automotive Power Electronics Market Size by Technology ($ bn) |
1.17. | Automotive: Key Application for Sintering |
1.18. | Power Electronics Trends Summary |
1.19. | The Transition to Silicon Carbide |
1.20. | Shrinking Die Sizes with SiC MOSFETs |
1.21. | Solders Reach Melting Point |
1.22. | Nano Particle Ag Sinter |
1.23. | Gamechanger? Threats to Ag - Cu Sintering pastes |
1.24. | Die-area Forecast in EV Power Electronics |
1.25. | Access to IDTechEx Portal Profiles |
2. | ELECTRIC CAR MARKETS |
2.1. | Industry Terms |
2.2. | Electric Vehicles: Typical Specs |
2.3. | The Global Electric Car Market |
2.4. | Plug-in Hybrids Doomed |
2.5. | Electric Vehicle Drivers |
2.6. | Electric Vehicle Barriers |
2.7. | Debunking EV Myths: Emissions Just Shift to Electricity Generation? |
2.8. | Debunking EV Myths: Emissions Just Shift to Electricity Generation? |
2.9. | Fossil Fuel Bans |
2.10. | Official or Legislated Fossil Fuel Bans |
2.11. | Unofficial, Drafted or Proposed Fossil Fuel Bans |
2.12. | Electric Car Forecasts (Unit Sales) |
3. | INTRODUCTION TO POWER ELECTRONICS |
3.1. | What is Power Electronics? |
3.2. | Power Electronics in Electric Vehicles |
3.3. | Inverters: Working Principle |
3.4. | Full Bridge & Half Bridge |
3.5. | Pulse Width Modulation |
3.6. | Passive Components |
3.7. | DC Link Capacitors |
3.8. | Traditional EV Inverter Package |
3.9. | Power Switch History |
3.10. | Transistor Basics |
3.11. | Wide bandgap Semiconductor Basics (1) |
3.12. | Wide-bandgap Semiconductor Basics (2) |
3.13. | Mitsubishi Electric SiC Device Advancement |
3.14. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
3.15. | SiC MOSFETs Vs GaN HEMTs in EV (1) |
3.16. | SiC MOSFETs Vs GaN HEMTs in EV (2) |
3.17. | Automotive GaN Device Suppliers |
3.18. | Applications Summary for WBG Devices |
3.19. | Semiconductor Content Increased |
4. | AUTOMOTIVE INVERTERS |
4.1. | Traditional EV Inverter Package |
4.2. | Power Device Types |
4.3. | Electric Vehicle Inverter Benchmarking |
4.4. | Silicon Carbide Size Reductions to Inverter Package |
4.5. | SiC Impact on the Inverter Package |
4.6. | Rohm Silicon Carbide Inverters |
4.7. | The Transition to Silicon Carbide |
4.8. | SiC Inverter Experience Curve |
4.9. | Limitations of SiC Power Devices |
4.10. | SiC Power Roadmap |
5. | SUPPLY CHAIN |
5.1. | Automotive Power Module Market Shares |
5.2. | SiC Supply Chain |
5.3. | Power Module Supply Chain & Innovations |
5.4. | Value chain for SiC power modules |
5.5. | Infineon |
5.6. | Infineon Silicon Carbide Roadmap |
5.7. | Infineon's HybridPACK is used by Multiple Manufacturers |
5.8. | Hyundai E-GMP |
5.9. | Hyundai E-GMP 800V Inverter Suppliers |
5.10. | ROHM Semiconductor (1) |
5.11. | ROHM Semiconductor (2) |
5.12. | ROHM Semiconductor (3) |
5.13. | STMicroelectronics |
5.14. | Delphi Technologies (BorgWarner) |
5.15. | Cree Wolfspeed 650V MOSFET |
5.16. | Volvo Heavy Duty SiC Inverter |
5.17. | Other SiC Inverter Projects & Announcements |
5.18. | Ford and BorgWarner |
5.19. | Ford and Schaeffler |
5.20. | FCA (1) |
5.21. | FCA (2) |
5.22. | Lordstown Motors |
5.23. | General Motors |
5.24. | Chevy Bolt Power Module |
5.25. | Chevy Bolt Power Module (by LG Electronics / Infineon) |
5.26. | GM: Ultium Platform |
5.27. | Audi e-tron 2018 |
5.28. | Delphi, Cree, Oak Ridge National Laboratory and Volvo |
6. | PACKAGE MATERIALS & INNOVATIONS |
6.1. | Power Module Packaging Over the Generations |
6.2. | Traditional Power Module Packaging |
6.3. | Module Packaging Material Dimensions |
6.4. | Wirebonds |
6.5. | Al Wire Bonds: A Common Failure Point |
6.6. | Die and Substrate Attach are Common Failure Modes |
6.7. | Advanced Wirebonding Techniques |
6.8. | Direct Lead Bonding (Mitsubishi) |
6.9. | Tesla's SiC package |
6.10. | Tesla Inverter Cross-section |
6.11. | Evolution of Tesla's Power Electronics |
6.12. | Shrinking Die Sizes with SiC MOSFETs |
6.13. | Technology Evolution Beyond Al Wire Bonding |
6.14. | Baseplate, Heat Sink, Encapsulation Materials |
6.15. | Infineon |
6.16. | Continental / Jaguar Land Rover |
6.17. | Nissan Leaf Custom Design |
6.18. | The Choice of Solder / Die-attach Technology |
6.19. | Junction Temperature Increasing |
6.20. | Die Attach Technology Trends |
6.21. | Silver Sintered Pastes Emerging |
6.22. | Automotive: Key Application for Sintering |
6.23. | Solders Reach Melting Point |
6.24. | Challenges with Ag sintering |
6.25. | Nano Particle Ag Sinter |
6.26. | Simplifications to the Manufacturing Process |
6.27. | Heraeus Die top system with pre applied paste |
6.28. | Gamechanger? Embedding: Important Technology for Power Modules |
6.29. | Gamechanger? Threats to Ag - Cu Sintered Pastes |
6.30. | Cu Sinter Materials |
7. | SUBSTRATES |
7.1. | The Choice of Ceramic Substrate Technology |
7.2. | The Choice of Ceramic Substrate Technology |
7.3. | AlN: Overcoming its Mechanical Weakness |
8. | APPROACHES TO SUBSTRATE METALLISATION |
8.1. | Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation |
8.2. | Direct Plated Copper (DPC): Pros and Cons |
8.3. | Double Bonded Copper (DBC): Pros and Cons |
8.4. | Active Metal Brazing (AMB): Pros and Cons |
8.5. | Ceramics: CTE Mismatch |
8.6. | Multi-layered Printed Circuit Boards |
8.7. | Nissan Leaf Inverter PCB |
9. | POWER ELECTRONICS COOLING & THERMAL MANAGEMENT |
9.1. | Introduction to EV Thermal Management |
9.2. | Active vs Passive Cooling |
9.3. | Liquid Cooling |
9.4. | Refrigerant Cooling |
9.5. | Cooling Strategy Thermal Properties |
9.6. | Analysis of Cooling Methods |
9.7. | Power Electronics Cooling |
9.8. | Optimal Temperatures for Multiple Components |
9.9. | Why use TIM in Power Modules? |
9.10. | Why the Drive to Eliminate the TIM? |
9.11. | Thermal Grease: Other Shortcomings |
9.12. | Has TIM Been Eliminated in any EV Inverter Modules? |
9.13. | Double-sided Cooling |
9.14. | Tesla Model 3 2018 Liquid Cooling |
9.15. | Nissan Leaf Liquid Cooling |
9.16. | Jaguar I-PACE 2019 (Continental) Liquid Cooling |
10. | POWER MODULES 2004-2016 |
10.1. | Toyota Prius 2004-2010 |
10.2. | BWM i3 (by Infineon) |
10.3. | 2008 Lexus |
10.4. | Toyota Prius 2010-2015 |
10.5. | Nissan Leaf 2012 |
10.6. | Renault Zoe 2013 (Continental) |
10.7. | Honda Accord 2014 |
10.8. | Honda Fit (by Mitsubishi) |
10.9. | Toyota Prius 2016 onwards |
10.10. | Chevrolet Volt 2016 (by Delphi) |
10.11. | Cadillac 2016 (by Hitachi) |
10.12. | Manufacturing Process |
11. | ONBOARD CHARGERS |
11.1. | Onboard Charger Basics |
11.2. | Onboard Charger Circuits |
11.3. | Tesla Onboard Charger / DC DC converter |
11.4. | Tesla SiC OBC |
11.5. | Onboard Charger Forecast by Power Level 2022- 2032 |
12. | 800-1000V CARS |
12.1. | Historic BEV Sales by Voltage Level |
12.2. | 800V Platform Announcements |
12.3. | Why move to 800+ V? |
12.4. | Is all 800V SiC? Audi e-tron 2018 and Porsche Taycan? |
12.5. | Is 350kW Needed? |
12.6. | Slow AC Chargers Dominate |
12.7. | Moving to 800V Requires Deep System Changes |
12.8. | Fast Charging at Different Scales |
12.9. | Why can't you just fast charge Li-ion? |
12.10. | Rate limiting factors at the material level |
12.11. | Fast charge design hierarchy - levers to pull |
12.12. | Porsche Taycan & Tesla Fast Charge Comparison |
12.13. | 800V - 1000V Inverter Forecast (2022 - 2032) |
12.14. | Conclusions |
13. | FORECASTS |
13.1. | On-road Electric Vehicle Forecasts (Vehicles) |
13.2. | Inverters per Car Forecast |
13.3. | Multiple Motors / Inverters per Vehicle |
13.4. | SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales) |
13.5. | 800V - 1000V Inverter Forecast (2022 - 2032) |
13.6. | SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW) |
13.7. | Onboard Charger Forecast by Power Level 2022- 2032 |
13.8. | Inverter, OBC, LV Converter Forecast (GW) to 2032 |
13.9. | Automotive Power Electronics Market Size by Device ($ bn) |
13.10. | Automotive Power Electronics Market Size by Technology ($ bn) |
13.11. | Die-area Forecast in EV Power Electronics |
13.12. | Die Area Forecasts for SiC MOSFET, Si IGBT, Inverter, OBC, DC DC Converter (m2) |
13.13. | Methodology |
13.14. | Inverter, OBC & Converter Cost Assumption ($ per kW) |