This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. | Purpose of this report |
1.2. | Basics |
1.2.1. | Definitions and history |
1.3. | Primary conclusions |
1.3.1. | Importance of solar vehicles |
1.3.2. | Tipping points for sales of solar cars |
1.3.3. | Tipping points for sales of solar trucks, buses and trains |
1.3.4. | Corporate and geographical positioning |
1.3.5. | Chemistry |
1.3.6. | Format |
1.3.7. | Leading solar cars compared: Sono, Lightyear, Toyota |
1.3.8. | Tesla solar Cybertruck |
1.3.9. | Squad - solar city car |
1.3.10. | Solar buses and trucks |
1.3.11. | Trains |
1.3.12. | Patent analysis: solar car |
1.3.13. | Patent analysis: solar vehicle |
1.3.14. | New directions |
1.4. | Market forecasts |
1.4.1. | Solar energy-independent cars 2021-2041 |
1.4.2. | Solar energy-independent cars 2021-2041 - number of vehicles (thousand) |
1.4.3. | Solar energy-independent cars 2021-2041 - unit value (US$ thousand) - ex factory |
1.4.4. | Solar energy-independent cars 2021-2041 - market value (US$ billion) |
1.4.5. | Major solar opportunity on 20 million 48V hybrid cars yearly |
1.4.6. | Global photovoltaic technology share $bn % 2041 |
1.4.7. | Technology timeline for solar cars |
2. | INTRODUCTION |
2.1. | Extreme vehicles and weak light create new markets |
2.2. | How an Electric Vehicle EV works |
2.3. | Photovoltaics for electric vehicles |
2.3.1. | Definition and background |
2.3.2. | Choice of chemistry |
2.3.3. | Future chemistry and efficiency trends |
2.3.4. | Choice of format |
2.4. | Solar racers show the future |
2.5. | Solar aircraft and boats show the future |
2.6. | The big picture: Energy Independent Electric Vehicles |
2.6.1. | Definition and derivation |
2.6.2. | Types of Energy Independent Electric Vehicle EIEV |
2.6.3. | EIEV operational choices |
2.6.4. | Key EIEV technologies |
2.6.5. | Examples of EIEV technologies on land past, present and concept |
2.6.6. | Technologies of marine EIEVs past, present and concept |
2.6.7. | Technologies of airborne EIEVs past, present and concept |
2.6.8. | Characteristics of the High Power Energy Harvesting essential to EIEVs |
2.6.9. | Chasing affordable, ultra-lightweight conformal PV for EIEVs |
2.7. | Solar vehicles: Australia joins the party |
2.8. | A Solar Tray Cover for Pickup Trucks |
3. | SOLAR CARS WORLDWIDE |
3.1. | Armenia |
3.2. | Australia |
3.2.1. | Sunswift |
3.2.2. | Immortus passenger concept car, Australia |
3.2.3. | University of Melbourne AIMES |
3.3. | Canada |
3.3.1. | University of Waterloo |
3.4. | China |
3.4.1. | Dalian Sengu tourist bus |
3.4.2. | Amthi Solar 3 wheeler |
3.4.3. | Hanergy |
3.5. | Cyprus |
3.6. | France |
3.6.1. | Bolloré Group |
3.6.2. | Venturi Eclectic |
3.7. | Germany |
3.7.1. | Fraunhofer ISE |
3.7.2. | Sono Motors |
3.8. | Greece |
3.8.1. | Sunnyclist |
3.9. | India |
3.9.1. | Manipal IT |
3.9.2. | Neeraj and other solar rickshaws |
3.9.3. | Team BHP |
3.9.4. | Vikram Solar |
3.10. | Italy |
3.10.1. | University of Bologna |
3.10.2. | I-FEVS |
3.10.3. | POLYMODEL |
3.10.4. | eTrikes |
3.10.5. | Limcar |
3.11. | Japan |
3.11.1. | Toyota |
3.12. | Korea |
3.12.1. | Hyundai |
3.13. | Netherlands |
3.13.1. | Stella Lux |
3.13.2. | Stella Era |
3.13.3. | Lightyear One vs Tesla Model 3 |
3.14. | Pakistan |
3.14.1. | Economia |
3.15. | Rwanda |
3.16. | Spain |
3.16.1. | Evovelo |
3.17. | Sweden |
3.17.1. | Midsummer |
3.18. | UK |
3.18.1. | Cargo Trike |
3.18.2. | Cambridge University |
3.19. | USA |
3.19.1. | Aptera 3 Wheel Solar Car |
3.19.2. | CalPoly |
3.19.3. | Ford |
3.19.4. | Karma |
4. | SOLAR BUSES, TRUCKS AND PRECURSORS |
4.1. | Austria |
4.1.1. | K-Bus |
4.2. | Brazil |
4.2.1. | Sunew |
4.3. | Canada |
4.3.1. | Group Robert |
4.4. | China |
4.4.1. | BYD and others |
4.4.2. | Nanowinn Technologies |
4.5. | Italy |
4.5.1. | Vehicoli Speciali |
4.6. | Japan |
4.6.1. | Solarve |
4.6.2. | Akita prefecture |
4.7. | Korea |
4.8. | Netherlands |
4.8.1. | Solar-powered vehicle to South Pole |
4.9. | Norway |
4.9.1. | Green Energy |
4.10. | Slovenia |
4.11. | Sweden |
4.11.1. | Wheelys |
4.12. | Switzerland |
4.12.1. | E-FORCE |
4.13. | Uganda |
4.13.1. | Kiira Motors |
4.13.2. | Kayoola |
4.14. | UK |
4.15. | USA |
4.15.1. | Detleffs |
4.15.2. | Ecosphere Technologies |
4.15.3. | Greentrucks on the go |
4.15.4. | Mesilla Valley Transportation and K&J Trucking |
4.15.5. | Navistar and Volvo |
5. | SOLAR FOR TRAINS |
5.1. | Overview |
5.2. | India |
5.2.1. | Indian Railways |
5.3. | UK |
5.3.1. | Network Rail Hampshire |
5.4. | USA |
5.4.1. | Byron Bay railroad |
5.4.2. | Solar Bullet |
6. | PHOTOVOLTAICS: THE BIG PICTURE |
6.1. | Purpose of this chapter |
6.2. | Two worlds |
6.3. | Anatomy of the photovoltaic business 2020-2040 |
6.4. | Primary conclusions: photovoltaics top ten manufacturers chemistry |
6.5. | Primary conclusions: price-volume sensitivity by application |
6.6. | Primary conclusions: cost progression 1976-2040 |
6.7. | Primary conclusions: thin film PV market |
6.8. | Primary conclusions: cadmium telluride |
6.9. | Primary conclusions: geographic PV materials demand |
6.10. | CIGS PV forecasts |
6.10.1. | Global output of thin film CIGS photovoltaics $M and MWp 2000-2018 |
6.10.2. | Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040 |
6.11. | Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040 |
7. | SOLAR AGRIBOTS, AIRCRAFT AND BOATS |
7.1. | Lessons from solar agribots |
8. | FUTURE ENABLING TECHNOLOGIES |
8.1. | Solar with integral energy storage |
8.2. | Colloidal quantum dot spray on solar |
8.3. | Multi-mode energy harvesting |
8.4. | Harvesting technologies now and in future for air vehicles |
8.5. | Mechanical with electrical energy independent vehicles |
8.6. | Systems for EIEVs |
8.7. | Energy positive large vehicles |
8.8. | Solar vehicles replace diesel gensets |
Slides | 256 |
---|---|
ISBN | 9781913899073 |