1. | EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. | Purpose of this report |
1.2. | Basics |
1.2.1. | Definitions and history |
1.3. | Primary conclusions |
1.3.1. | Importance of solar vehicles |
1.3.2. | Tipping points for sales of solar cars |
1.3.3. | Tipping points for sales of solar trucks, buses and trains |
1.3.4. | Corporate and geographical positioning |
1.3.5. | Chemistry |
1.3.6. | Format |
1.3.7. | Leading solar cars compared: Sono, Lightyear, Toyota |
1.3.8. | Tesla solar Cybertruck |
1.3.9. | Squad - solar city car |
1.3.10. | Solar buses and trucks |
1.3.11. | Trains |
1.3.12. | Patent analysis: solar car |
1.3.13. | Patent analysis: solar vehicle |
1.3.14. | New directions |
1.4. | Market forecasts |
1.4.1. | Solar energy-independent cars 2021-2041 |
1.4.2. | Solar energy-independent cars 2021-2041 - number of vehicles (thousand) |
1.4.3. | Solar energy-independent cars 2021-2041 - unit value (US$ thousand) - ex factory |
1.4.4. | Solar energy-independent cars 2021-2041 - market value (US$ billion) |
1.4.5. | Major solar opportunity on 20 million 48V hybrid cars yearly |
1.4.6. | Technology timeline for solar cars |
2. | INTRODUCTION |
2.1. | Extreme vehicles and weak light create new markets |
2.2. | How an Electric Vehicle EV works |
2.3. | Photovoltaics for electric vehicles |
2.3.1. | Definition and background |
2.3.2. | Choice of chemistry |
2.3.3. | Future chemistry and efficiency trends |
2.3.4. | Choice of format |
2.4. | Solar racers show the future |
2.5. | Solar aircraft and boats show the future |
2.6. | The big picture: Energy Independent Electric Vehicles |
2.6.1. | Definition and derivation |
2.6.2. | Types of Energy Independent Electric Vehicle EIEV |
2.6.3. | EIEV operational choices |
2.6.4. | Key EIEV technologies |
2.6.5. | Examples of EIEV technologies on land past, present and concept |
2.6.6. | Technologies of marine EIEVs past, present and concept |
2.6.7. | Technologies of airborne EIEVs past, present and concept |
2.6.8. | Characteristics of the High Power Energy Harvesting essential to EIEVs |
2.6.9. | Chasing affordable, ultra-lightweight conformal PV for EIEVs |
2.7. | Solar vehicles: Australia joins the party |
2.8. | A Solar Tray Cover for Pickup Trucks |
3. | SOLAR CARS WORLDWIDE |
3.1. | Armenia |
3.2. | Australia |
3.2.1. | Sunswift |
3.2.2. | Immortus passenger concept car, Australia |
3.2.3. | University of Melbourne AIMES |
3.3. | Canada |
3.3.1. | University of Waterloo |
3.4. | China |
3.4.1. | Dalian Sengu tourist bus |
3.4.2. | Amthi Solar 3 wheeler |
3.4.3. | Hanergy |
3.5. | Cyprus |
3.6. | France |
3.6.1. | Bolloré Group |
3.6.2. | Venturi Eclectic |
3.7. | Germany |
3.7.1. | Fraunhofer ISE |
3.7.2. | Sono Motors |
3.8. | Greece |
3.8.1. | Sunnyclist |
3.9. | India |
3.9.1. | Manipal IT |
3.9.2. | Neeraj and other solar rickshaws |
3.9.3. | Team BHP |
3.9.4. | Vikram Solar |
3.10. | Italy |
3.10.1. | University of Bologna |
3.10.2. | I-FEVS |
3.10.3. | POLYMODEL |
3.10.4. | eTrikes |
3.10.5. | Limcar |
3.11. | Japan |
3.11.1. | Toyota |
3.12. | Korea |
3.12.1. | Hyundai |
3.13. | Netherlands |
3.13.1. | Stella Lux |
3.13.2. | Stella Era |
3.13.3. | Lightyear One vs Tesla Model 3 |
3.14. | Pakistan |
3.14.1. | Economia |
3.15. | Rwanda |
3.16. | Spain |
3.16.1. | Evovelo |
3.17. | Sweden |
3.17.1. | Midsummer |
3.18. | UK |
3.18.1. | Cargo Trike |
3.18.2. | Cambridge University |
3.19. | USA |
3.19.1. | Ford |
3.19.2. | Karma |
4. | SOLAR BUSES, TRUCKS AND PRECURSORS |
4.1. | Austria |
4.1.1. | K-Bus |
4.2. | Canada |
4.2.1. | Group Robert |
4.3. | China |
4.3.1. | BYD and others |
4.3.2. | Nanowinn Technologies |
4.4. | Japan |
4.4.1. | Solarve |
4.4.2. | Akita prefecture |
4.5. | Korea |
4.6. | Netherlands |
4.6.1. | Solar-powered vehicle to South Pole |
4.7. | Norway |
4.7.1. | Green Energy |
4.8. | Slovenia |
4.9. | Sweden |
4.9.1. | Wheelys |
4.10. | Switzerland |
4.10.1. | E-FORCE |
4.11. | Uganda |
4.11.1. | Kiira Motors |
4.12. | USA |
4.12.1. | Detleffs |
4.12.2. | Mesilla Valley Transportation and K&J Trucking |
4.12.3. | Navistar and Volvo |
4.12.4. | Ecosphere Technologies |
4.13. | Sunew Brasil |
5. | SOLAR FOR TRAINS |
5.1. | Overview |
5.2. | India |
5.2.1. | Indian Railways |
5.3. | UK |
5.3.1. | Network Rail Hampshire |
5.4. | USA |
5.4.1. | Byron Bay railroad |
5.4.2. | Solar Bullet |
6. | PHOTOVOLTAICS: THE BIG PICTURE |
6.1. | Purpose of this chapter |
6.2. | Two worlds |
6.3. | Anatomy of the photovoltaic business 2020-2040 |
6.4. | Primary conclusions: photovoltaics top ten manufacturers chemistry |
6.5. | Primary conclusions: price-volume sensitivity by application |
6.6. | Primary conclusions: cost progression 1976-2040 |
6.7. | Primary conclusions: thin film PV market |
6.8. | Primary conclusions: cadmium telluride |
6.9. | Primary conclusions: geographic PV materials demand |
6.10. | CIGS PV forecasts |
6.10.1. | Global output of thin film CIGS photovoltaics $M and MWp 2000-2018 |
6.10.2. | Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040 |
6.11. | Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040 |
7. | SOLAR AGRIBOTS, AIRCRAFT AND BOATS |
7.1. | Lessons from solar agribots |
8. | FUTURE ENABLING TECHNOLOGIES |
8.1. | Solar with integral energy storage |
8.2. | Colloidal quantum dot spray on solar |
8.3. | Multi-mode energy harvesting |
8.4. | Harvesting technologies now and in future for air vehicles |
8.5. | Mechanical with electrical energy independent vehicles |
8.6. | Systems for EIEVs |
8.7. | Energy positive large vehicles |
8.8. | Solar vehicles replace diesel gensets |