This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | What's new in this report? |
1.2. | Optimal temperatures for multiple components |
1.3. | Battery thermal management competition |
1.4. | Thermal system architecture |
1.5. | BEV cars with heat pumps forecast (units) |
1.6. | Battery thermal management strategy by OEM |
1.7. | Higher battery capacities and liquid cooling |
1.8. | Cooling methodologies by region |
1.9. | Battery thermal management strategy forecast (GWh) |
1.10. | Thermal management in cell-to-pack designs |
1.11. | Immersion fluids: thermal conductivity and specific heat |
1.12. | Immersion fluid volume forecast (passenger cars, liters) |
1.13. | Thermal conductivity comparison of suppliers |
1.14. | Thermal conductivity shift |
1.15. | TIM pricing by supplier |
1.16. | TIM forecast for EV batteries by TIM type (revenue, US$) |
1.17. | Fire protection materials: main categories |
1.18. | Fire protection material market shares |
1.19. | Fire protection materials forecast (kg) |
1.20. | Motor thermal management competition |
1.21. | Motor cooling strategy by power |
1.22. | Cooling technology: OEM strategies |
1.23. | Motor cooling strategy by region |
1.24. | Motor cooling strategy forecast (units) |
1.25. | Power electronics thermal management competition |
1.26. | The transition to SiC |
1.27. | Advanced wire bonding techniques for inverters |
1.28. | Why metal sintering for power electronics? |
1.29. | Drivers for direct oil cooling of inverters |
1.30. | Inverter cooling strategy forecast (units) |
1.31. | Company profiles |
2. | INTRODUCTION |
2.1. | The growing EV market and need for thermal management |
2.2. | Electric vehicle definitions |
2.3. | Optimal temperatures for multiple components |
2.4. | Battery thermal management competition |
2.5. | Motor thermal management competition |
2.6. | Power electronics thermal management competition |
3. | IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE |
3.1. | Range calculations |
3.2. | Impact of ambient temperature and climate control |
3.3. | Impact of ambient temperature and climate control |
3.4. | Model comparison against ambient temperature |
3.5. | Model comparison with climate control |
3.6. | Model comparison with climate control |
3.7. | Summary |
4. | INNOVATIONS IN CABIN HEATING |
4.1. | Holistic vehicle thermal management |
4.2. | Technology timeline |
4.3. | What is a heat pump? |
4.4. | PTC vs heat pump |
4.5. | The impact on EV range |
4.6. | Recent EVs with heat pumps |
4.7. | BEV cars with heat pumps forecast (units) |
4.8. | Further innovations |
4.9. | Advantages of sophisticated thermal management |
4.10. | Thermal management advanced control: key players and technologies |
4.11. | Thermal system supplier announcements |
4.12. | General Motors - heat pump integration |
4.13. | Hanon Systems - heat pump systems |
5. | COOLANT FLUIDS, REFRIGERANTS, AND DIFFERENCES FOR EVS |
5.1. | Thermal system architecture |
5.2. | Thermal system architecture examples (1) |
5.3. | Thermal system architecture examples (2) |
5.4. | Coolant fluids in EVs |
5.5. | What's different about fluids used for EVs? |
5.6. | Electrical properties |
5.7. | Corrosion with fluids |
5.8. | Reducing viscosity |
5.9. | Lubrizol - oils for EVs |
5.10. | Arteco - Water-glycol coolants for EVs |
5.11. | Dober - water-glycol coolants for EVs |
5.12. | Refrigerant for EVs |
5.13. | Summary and outlook |
6. | THERMAL MANAGEMENT OF LI-ION BATTERIES IN ELECTRIC VEHICLES |
6.1. | Current technologies and OEM strategies |
6.1.1. | Introduction to EV battery thermal management |
6.1.2. | Active vs passive cooling |
6.1.3. | Passive battery cooling methods |
6.1.4. | Active battery cooling methods |
6.1.5. | Air cooling |
6.1.6. | Liquid cooling |
6.1.7. | Liquid cooling: design options |
6.1.8. | Liquid cooling: alternative fluids |
6.1.9. | Liquid cooling: large OEM announcements |
6.1.10. | Refrigerant cooling |
6.1.11. | Hyundai considering refrigerant cooling |
6.1.12. | Coolants: comparison |
6.1.13. | Cooling strategy thermal properties |
6.1.14. | Analysis of battery cooling methods |
6.1.15. | Battery thermal management strategy by OEM |
6.1.16. | OEMs are converging on liquid cooling |
6.1.17. | The emergence of fast charging |
6.1.18. | Higher battery capacities and liquid cooling |
6.1.19. | Why liquid cooling dominates |
6.1.20. | Cooling methodologies by region |
6.1.21. | Cooling methodologies by cell type |
6.1.22. | Future global trends in OEM cooling methodologies |
6.1.23. | Battery thermal management strategy forecast (GWh) |
6.1.24. | IDTechEx outlook |
6.1.25. | System changes moving to 800V |
6.1.26. | Thermal management in 800V systems |
6.1.27. | Thermal management in 800V systems |
6.1.28. | Thermal management in cell-to-pack designs |
6.2. | Immersion cooling for Li-ion batteries in EVs |
6.2.1. | Immersion cooling: introduction |
6.2.2. | Single-phase vs two-phase cooling |
6.2.3. | Immersion cooling fluids requirements |
6.2.4. | Immersion cooling architecture |
6.2.5. | Players: immersion fluids for EVs (1) |
6.2.6. | Players: immersion fluids for EVs (2) |
6.2.7. | Players: immersion fluids for EVs (3) |
6.2.8. | Engineered Fluids - dielectric immersion fluids |
6.2.9. | Immersion fluids: density and thermal conductivity |
6.2.10. | Immersion fluids: operating temperature |
6.2.11. | Immersion fluids: thermal conductivity and specific heat |
6.2.12. | Immersion fluids: viscosity |
6.2.13. | Immersion fluids: breakdown voltage |
6.2.14. | Immersion fluids: costs |
6.2.15. | Immersion fluids: summary |
6.2.16. | Players: XING Mobility, 3M and Castrol |
6.2.17. | Players: Rimac and Solvay |
6.2.18. | Players: Rimac ditching immersion? |
6.2.19. | Players: M&I Materials and Faraday Future |
6.2.20. | Players: Exoès, e-Mersiv and FUCHS Lubricants |
6.2.21. | Players: Kreisel and Shell |
6.2.22. | Players: Curtiss Motorcycles |
6.2.23. | LION Electric |
6.2.24. | McLaren Speedtail and Artura |
6.2.25. | Mercedes-AMG |
6.2.26. | SWOT analysis |
6.2.27. | IDTechEx outlook |
6.2.28. | Volume of immersion fluids in an EV |
6.2.29. | Immersion market adoption forecast |
6.2.30. | Immersion fluid volume forecast (passenger cars, liters) |
6.2.31. | Immersion fluid volume forecast (construction and agriculture EVs, liters) |
6.3. | Phase Change Materials (PCMs) |
6.3.1. | Phase change materials (PCMs) |
6.3.2. | Phase change materials as thermal energy storage |
6.3.3. | Fast charge of Li-ion batteries using integrated battery thermal management (iBTM) - AllCell |
6.3.4. | Calogy Solutions - heat pipe integration with PCMs |
6.3.5. | Phase change materials - players |
6.3.6. | PCM categories and pros and cons |
6.3.7. | PCM vs battery case study |
6.3.8. | Player: Sunamp |
6.3.9. | PCMs - players in EVs |
6.3.10. | Operating temperature range of commercial PCMs |
6.3.11. | AllCell (Beam Global) |
6.3.12. | PCMs - use-case and outlook |
6.4. | Heat spreaders and cooling plates |
6.4.1. | Inter-cell heat spreaders or cooling plates |
6.4.2. | Chevrolet Volt and Dana |
6.4.3. | Advanced cooling plates |
6.4.4. | Advanced cold plate design |
6.4.5. | Roll bond aluminium cold plates |
6.4.6. | Examples of cold plate design |
6.4.7. | DuPont - hybrid composite/metal cooling plate |
6.4.8. | L&L Products - structural adhesive to enable a new cold plate design |
6.4.9. | Senior Flexonics - battery cold plate materials choice |
6.4.10. | Graphite heat spreaders |
6.4.11. | NeoGraf - graphitic thermal materials |
6.5. | Other notable developments |
6.5.1. | Temperature monitoring for EV batteries |
6.5.2. | IEE: printed temperature sensor and heater |
6.5.3. | InnovationLab: Integrated pressure/temperature sensors and heaters for battery cells |
6.5.4. | Tab cooling rather than surface cooling |
6.5.5. | Thermoelectric cooling |
6.5.6. | Skin cooling: Aptera Solar EV |
6.6. | Thermal management of EV batteries: use-cases |
6.6.1. | Audi e-tron |
6.6.2. | Audi e-tron GT |
6.6.3. | BMW i3 |
6.6.4. | BYD Blade |
6.6.5. | Chevrolet Bolt |
6.6.6. | Faraday Future FF 91 |
6.6.7. | Ford Mustang Mach-E/Transit/F150 battery |
6.6.8. | Hyundai Kona |
6.6.9. | Hyundai E-GMP |
6.6.10. | Jaguar I-PACE |
6.6.11. | Mercedes EQS |
6.6.12. | MG ZS EV |
6.6.13. | MG cell-to-pack |
6.6.14. | Polestar |
6.6.15. | Rimac Technology |
6.6.16. | Rivian |
6.6.17. | Romeo Power |
6.6.18. | Tesla Model S P85D |
6.6.19. | Tesla Model 3/Y |
6.6.20. | Tesla Model 3/Y prismatic LFP pack |
6.6.21. | Tesla Model S Plaid |
6.6.22. | Tesla 4680 pack |
6.6.23. | Toyota Prius PHEV |
6.6.24. | Toyota RAV4 PHEV |
6.6.25. | Voltabox |
6.6.26. | VW MEB Platform |
6.6.27. | Xerotech |
6.7. | Thermal interface materials for EV battery packs |
6.7.1. | Introduction to thermal interface materials for EVs |
6.7.2. | TIM pack and module overview |
6.7.3. | TIM application - pack and modules |
6.7.4. | TIM application by cell format |
6.7.5. | Key properties for TIMs in EVs |
6.7.6. | Gap pads in EV batteries |
6.7.7. | Switching to gap fillers from pads |
6.7.8. | Dispensing TIMs introduction |
6.7.9. | Challenges for dispensing TIM |
6.7.10. | Thermally conductive adhesives in EV batteries |
6.7.11. | Material options and market comparison |
6.7.12. | TIM chemistry comparison |
6.7.13. | The silicone dilemma for the automotive market |
6.7.14. | Thermal interface material fillers for EV batteries |
6.7.15. | TIM filler comparison and adoption |
6.7.16. | Thermal conductivity comparison of suppliers |
6.7.17. | Factors impacting TIM pricing |
6.7.18. | TIM pricing by supplier |
6.7.19. | TIM in cell-to-pack designs |
6.7.20. | TIM players |
6.7.21. | TIM EV use cases |
6.7.22. | TIM forecasts |
6.8. | Fire protection materials |
6.8.1. | Thermal runaway and fires in EVs |
6.8.2. | Battery fires and related recalls (automotive) |
6.8.3. | Automotive fire incidents: OEMs and causes |
6.8.4. | EV fires compared to ICEs |
6.8.5. | Severity of EV fires |
6.8.6. | EV fires: when do they happen? |
6.8.7. | Regulations |
6.8.8. | What are fire protection materials? |
6.8.9. | Thermally conductive or thermally insulating? |
6.8.10. | Fire protection materials: main categories |
6.8.11. | Material comparison |
6.8.12. | Density vs thermal conductivity - thermally insulating |
6.8.13. | Material market shares |
6.8.14. | Fire protection materials forecast (kg) |
6.8.15. | Fire protection materials |
7. | THERMAL MANAGEMENT IN EV CHARGING STATIONS |
7.1. | Overview of charging levels |
7.2. | High power charging (HPC) will be the new premium public charging solution |
7.3. | Thermal considerations for fast charging |
7.4. | Liquid cooled charging stations |
7.5. | Cable cooling to achieve high power charging |
7.6. | Tesla adopts liquid-cooled cable for its Supercharger |
7.7. | Liquid-cooled connector for ultra fast charging |
7.8. | Brugg eConnect liquid cooled cables |
7.9. | ITT Cannon liquid cooled charging |
7.10. | Immersion cooled charging stations |
7.11. | Two-phase cooled charging cables |
7.12. | Commercial charger benchmark: cooling technology |
7.13. | Charging infrastructure for electric vehicles |
8. | THERMAL MANAGEMENT OF ELECTRIC MOTORS |
8.1. | Overview |
8.1.1. | Electric traction motor types |
8.1.2. | Electric motor type market share |
8.1.3. | Cooling electric motors |
8.2. | Motor cooling strategies |
8.2.1. | Air cooling |
8.2.2. | Water-glycol cooling |
8.2.3. | Oil cooling |
8.2.4. | Electric motor thermal management overview |
8.2.5. | Motor cooling strategy by power |
8.2.6. | Cooling strategy by motor type |
8.2.7. | Cooling technology: OEM strategies |
8.2.8. | Motor cooling strategy by region |
8.2.9. | Motor cooling strategy market share (2015-2022) |
8.2.10. | Motor cooling strategy forecast (units) |
8.2.11. | Alternate cooling structures |
8.2.12. | Refrigerant cooling |
8.2.13. | Immersion cooling |
8.2.14. | Phase change materials |
8.3. | Motor insulation and encapsulation |
8.3.1. | Impregnation and encapsulation |
8.3.2. | Potting and encapsulation: players |
8.3.3. | Axalta - motor insulation |
8.3.4. | Huntsman - epoxy encapsulation and impregnation |
8.3.5. | Sumitomo Bakelite - composite stator encapsulation |
8.3.6. | Elantas - insulation systems for 800V motors |
8.4. | Emerging motor technologies |
8.4.1. | Axial flux motors |
8.4.2. | Axial flux motors enter the EV market |
8.4.3. | Thermal management for axial flux motors |
8.4.4. | In-wheel motors |
8.5. | Thermal management of EV motors: OEM use-cases |
8.5.1. | Audi e-tron |
8.5.2. | Audi Q4 e-tron |
8.5.3. | BMW i3 |
8.5.4. | BMW 5th gen drive |
8.5.5. | Bosch - commercial vehicle motors |
8.5.6. | Chevrolet Bolt (2017-2021) |
8.5.7. | Equipmake: spoke geometry |
8.5.8. | Ford Mustang Mach-E |
8.5.9. | GM Ultium Drive |
8.5.10. | Jaguar I-PACE |
8.5.11. | Huawei - intelligent oil cooling |
8.5.12. | Hyundai E-GMP |
8.5.13. | Koenigsegg - raxial flux |
8.5.14. | LiveWire (Harley Davidson) |
8.5.15. | MAHLE - magnet free oil cooled motor |
8.5.16. | Mercedes EQ |
8.5.17. | Nidec - Gen.2 drive |
8.5.18. | Nissan Leaf |
8.5.19. | Rivian |
8.5.20. | SAIC - oil cooling system |
8.5.21. | Schaeffler - truck motors |
8.5.22. | Tesla Model S (pre-2021) |
8.5.23. | Tesla Model 3 |
8.5.24. | Toyota Prius |
8.5.25. | VW ID3/ID4 |
8.5.26. | Yamaha - hypercar electric motor |
8.5.27. | ZF - commercial vehicle motors |
9. | THERMAL MANAGEMENT IN ELECTRIC VEHICLE POWER ELECTRONICS |
9.1. | Introduction and technology evolution |
9.1.1. | What is power electronics? |
9.1.2. | Power electronics in electric vehicles |
9.1.3. | Power electronics device power ranges |
9.1.4. | Power switches (transistors) |
9.1.5. | Power switch history |
9.1.6. | Wide-bandgap semiconductors |
9.1.7. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
9.1.8. | Applications for SiC & GaN |
9.1.9. | Drivers for 800V platforms |
9.1.10. | The Transition to SiC |
9.1.11. | Inverter power modules |
9.1.12. | Inverter package designs |
9.1.13. | Traditional power module packaging |
9.1.14. | Module packaging material dimensions |
9.1.15. | Single side, double side, direct, and direct cooling |
9.1.16. | Double-sided cooling |
9.1.17. | Double-sided cooling examples |
9.1.18. | Baseplate, heat sink, and encapsulation materials |
9.2. | Wire bonds and alternatives |
9.2.1. | Wire bonds |
9.2.2. | Al wire bonds: a common failure point |
9.2.3. | Advanced wire bonding techniques |
9.2.4. | Tesla's novel bonding technique |
9.2.5. | Direct lead bonding (Mitsubishi) |
9.2.6. | Die top system - Heraeus |
9.2.7. | Wire bond technology by supplier |
9.3. | Die attach and future materials |
9.3.1. | Die and substrate attach are common failure modes |
9.3.2. | Which solder for wide bandgap? |
9.3.3. | Why metal sintering for power electronics? |
9.3.4. | Challenges with Ag sintering |
9.3.5. | Simplifications to the manufacturing process |
9.3.6. | Gamechanger? Threats to Ag - Cu sintering pastes |
9.3.7. | Sintering: die-to-substrate, substrate-baseplate or heat sink, die pad to interconnect, etc.) |
9.3.8. | Evolution of Tesla's power electronics |
9.3.9. | Die attach technology evolution |
9.3.10. | Die attach technology by supplier |
9.4. | Substrate materials and future alternatives |
9.4.1. | The choice of ceramic substrate technology |
9.4.2. | The choice of ceramic substrate technology |
9.4.3. | AlN: overcoming its mechanical weakness |
9.4.4. | Thermal conductivity vs thermal expansion |
9.4.5. | Ceramics: CTE mismatch |
9.4.6. | Approaches to metallisation: DPC, DBC, AMB and thick film metallisation |
9.4.7. | Direct plated copper (DPC): pros and cons |
9.4.8. | Double bonded copper (DBC): pros and cons |
9.4.9. | Active metal brazing (AMB): pros and cons |
9.4.10. | Thick film printing |
9.4.11. | Heraeus - materials for power electronics |
9.4.12. | ALMT - MgSiC baseplate |
9.5. | Removing thermal interface materials |
9.5.1. | Why TIM is used in power electronics |
9.5.2. | Why the drive to eliminate the TIM? |
9.5.3. | Thermal grease: other shortcomings |
9.5.4. | EV inverter modules where TIM has been eliminated (1) |
9.5.5. | EV inverter modules where TIM has been eliminated (2) |
9.5.6. | Infineon - pre-applied TIM |
9.5.7. | IGBTs and SiC are not the only TIM area in inverters |
9.6. | Power electronics packages: EV use-cases |
9.7. | Toyota Prius 2004-2010 |
9.8. | 2008 Lexus |
9.9. | Toyota Prius 2010-2015 |
9.10. | Nissan Leaf 2012 |
9.11. | Honda Accord 2014 |
9.12. | Honda Fit (by Mitsubishi) |
9.13. | Toyota Prius 2016 onwards |
9.14. | Chevrolet Volt 2016 (by Delphi) |
9.15. | Cadillac 2016 (by Hitachi) |
9.16. | Audi e-tron 2018 |
9.17. | BWM i3 (by Infineon) |
9.18. | Infineon |
9.19. | Delphi, Cree, Oak Ridge National Laboratory, and Volvo |
9.20. | Tesla's SiC package |
9.21. | What does this mean for the MOSFET package? |
9.22. | STMicro |
9.23. | Continental / Jaguar Land Rover inverter |
9.24. | Nissan Leaf custom inverter design |
9.25. | Hyundai E-GMP (Infineon) |
9.26. | Danfoss |
9.27. | BorgWarner |
9.28. | onsemi |
9.29. | Cooling power electronics: water or oil |
9.29.1. | Inverter package cooling |
9.29.2. | Drivers for direct oil cooling of inverters |
9.29.3. | Advantages, disadvantages and drivers for oil cooled inverters |
9.29.4. | Direct oil cooling projects |
9.29.5. | Inverter cooling strategy forecast (units) |
9.29.6. | Liquid cooled inverter examples |
10. | SUMMARY OF FORECASTS |
10.1. | Forecast methodology |
10.2. | BEV cars with heat pumps forecast (units) |
10.3. | Battery thermal management strategy forecast (GWh) |
10.4. | Immersion fluid volume forecast (passenger cars, liters) |
10.5. | Immersion fluid volume forecast (construction and agriculture EVs, liters) |
10.6. | TIM Forecast for EV batteries by TIM type (kg) |
10.7. | TIM forecast for EV batteries by TIM type (revenue, US$) |
10.8. | TIM Forecast for EV batteries by vehicle type (kg and US$) |
10.9. | Fire protection materials forecast (kg) |
10.10. | Motor cooling strategy forecast (units) |
10.11. | Inverter cooling strategy forecast (units) |
11. | COMPANY PROFILES |
11.1. | ADA Technologies |
11.2. | Amphenol Advanced Sensors |
11.3. | Asahi Kasei |
11.4. | Aspen Aerogels |
11.5. | Axalta |
11.6. | Beam Global/AllCell |
11.7. | Bostik |
11.8. | Cadenza Innovation |
11.9. | CSM |
11.10. | DuPont |
11.11. | e-Mersiv |
11.12. | Elkem |
11.13. | Engineered Fluids |
11.14. | FUCHS |
11.15. | H.B. Fuller |
11.16. | Henkel |
11.17. | Huber Martinswerk |
11.18. | JIOS Aerogel |
11.19. | M&I Materials |
11.20. | NeoGraf |
11.21. | Nexperia |
11.22. | Parker Lord |
11.23. | PST Sensors |
11.24. | Rogers Corporation |
11.25. | Romeo Power |
11.26. | Solvay Specialty Polymers |
11.27. | Ultimate Transmissions |
11.28. | Voltabox |
11.29. | Von Roll |
11.30. | WACKER |
11.31. | Xerotech |
11.32. | XING Mobility |
11.33. | Zeon |
Slides | 476 |
---|---|
Forecasts to | 2033 |