This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. | Purpose of this report |
1.2. | Definition and status |
1.2.1. | Definition |
1.2.2. | Primary conclusions |
1.2.3. | Patent analysis |
1.3. | Impediments by power level |
1.4. | New focus |
1.4.1. | Overview |
1.4.2. | Unsatisfied needs for low power TEGs |
1.4.3. | Unsatisfied needs for high power TEGs |
1.4.4. | New focus: healthcare |
1.4.5. | Trend to flexible energy harvesting and sensing |
1.5. | New models predict higher efficiencies possible: Univ. Houston/ A*STAR Hong Kong |
1.5.1. | University of Houston |
1.5.2. | A*STAR Hong Kong |
1.6. | Market forecasts |
1.6.1. | Thermoelectric energy harvesting transducers by application 2019-2030 - number million |
1.6.2. | Thermoelectric energy harvesting transducers by application 2019-2030 - unit value dollars |
1.6.3. | Thermoelectric energy harvesting transducers by application 2019-2030 - dollars million |
1.6.4. | Thermoelectric sensors and actuators 2020-2030 $ billion |
1.6.5. | Wearable technology forecast |
2. | INTRODUCTION |
2.1. | The Seebeck and Peltier effects |
2.2. | Manufacturing of thermoelectric generators |
2.2.1. | Construction and materials |
2.2.2. | Design considerations |
2.3. | Thin film thermoelectric generators |
2.4. | Materials: chasing high ZT |
2.5. | New material |
3. | NEW PRINCIPLES: QUANTUM DOT AND SPIN-DRIVEN |
3.1. | Quantum dot |
3.2. | Spin driven thermoelectric effect STE |
4. | LOW POWER: LOW DELTA T AND FLEXIBLE/ STRETCHABLE |
4.1. | Powering sensors with only a few degrees temperature difference |
4.1.1. | Japanese universities |
4.1.2. | Chinese universities |
4.1.3. | PNNL USA |
4.1.4. | GeorgiaTech USA |
4.2. | Flexible thermoelectric harvesters |
4.2.1. | Overview |
4.2.2. | Textiles: new polymer dopants |
4.2.3. | Textiles: new platform |
4.2.4. | Mxenes, CNT |
4.2.5. | Stretchable thermoelectric coils: miniature flexible wearable devices |
4.3. | Healthcare |
4.3.1. | Overview |
4.3.2. | University Massachusetts Amherst |
5. | STATUS OF HIGH POWER TEG |
5.1. | Overview |
5.2. | Thermoelectrically-powered submarines and houses |
5.3. | H2O Degree with EnOcean |
5.4. | RGS Development, TEGnology, Komatsu KELK |
5.5. | Gentherm, Marlow |
5.6. | Alphabet Energy's E1 thermoelectric generator |
5.7. | Waste heat |
5.7.1. | Mitsubishi Materials |
5.7.2. | Paderborn University |
5.8. | Military and aerospace |
5.8.1. | Military AETEG |
5.8.2. | Bi-functional generator/ pre-cooler: DC power from aircraft bleed air |
5.8.3. | Military waste heat |
6. | NEW MANUFACTURING TECHNOLOGIES |
6.1. | Conventional beginnings TECA, former companies Tellurex, Micropelt |
6.2. | Manufacturing of flexible thermoelectric generators: Tyndall, AIST, ETH |
6.3. | Enhancing ZT of flexible TEGs |
6.4. | AIST flexible technology |
6.5. | Printed thermoelectrics - Otego |
6.6. | Enhancement by pressure: Osaka University |
7. | NEW APPLICATIONS |
7.1. | Building façades |
7.2. | Implantable thermoelectrics |
7.3. | Thermoelectrics in consumer electronics/wearables |
7.3.1. | Overview |
7.3.2. | Matrix PowerWatch |
7.3.3. | Matrix March 2019 |
7.3.4. | Powering other wearables next |
7.3.5. | Academic research on wearables |
7.4. | Powering IoT |
7.5. | Radiative cooling at night |
7.6. | Gas turbine sensing |
7.7. | Other examples of thermoelectric progress |
7.7.1. | Better formats |
7.7.2. | Thermite powered thermoelectrics |
7.8. | Major structures |
7.8.1. | Smart roads |
7.8.2. | Radiative cooling outdoors: Univs Colorado, Wyoming, California |
8. | NEW MATERIALS |
8.1. | Organics |
8.1.1. | Bacterial nanocellulose |
8.1.2. | Fluoro-elastomer rubbers |
8.1.3. | PEDOT:PSS as a thermoelectric |
8.2. | Integration into silicon chips |
8.2.1. | Alloy films |
8.2.2. | Nanoblades |
8.3. | Other inorganics |
8.4. | e-textile integration |
8.5. | New materials for high temperatures |
9. | THERMOELECTRIC SENSING |
9.1. | Overview |
9.2. | MEMS thermoelectric infrared sensors |
9.3. | Micro-thermoelectric gas sensor: hydrogen and atomic oxygen |
9.4. | Transfer standards |
9.5. | Fabric sensors |
9.6. | Self-powered wireless sensor |
9.7. | Ultrasensitive heat sensor for healthcare |
9.8. | Three parameters from one sensor |
10. | ORGANISATION PROFILES |
10.1. | AIST Japan |
10.2. | Alphabet Energy, Inc. USA |
10.3. | Applied Thermoelectric Solutions USA |
10.4. | Citizen Watch Japan |
10.5. | e-ThermoGentech Japan |
10.6. | EVERREDtronics Ltd China |
10.7. | Ferrotec Corporation USA |
10.8. | Fujifilm Japan |
10.9. | Furukawa Japan |
10.10. | Gentherm USA |
10.11. | greenTEG Switzerland |
10.12. | Hi Z Technology, Inc USA |
10.13. | KELK Ltd |
10.14. | Kyocera Japan |
10.15. | Laird Technologies USA |
10.16. | Lintec Japan |
10.17. | Mahle O-Flexx Germany |
10.18. | Marlow Industries USA |
10.19. | mc10 |
10.20. | Murata Japan |
10.21. | Novus USA |
10.22. | OTEGO Germany |
10.23. | Panasonic Japan |
10.24. | Perpetua |
10.25. | PL Engineering Russia |
10.26. | RGS Development Netherlands |
10.27. | RMT Russia |
10.28. | Romny Scientific USA |
10.29. | Showa Denko, Showa Holdings Japan |
10.30. | TECTEG Mfr Canada |
10.31. | TES New Energy Japan |
10.32. | Thermolife Energy Corporation |
10.33. | Toshiba Japan |
10.34. | Yamaha |
10.35. | Yasanuga Japan |
Slides | 257 |
---|---|
Forecasts to | 2030 |