You are here: » Timelines » The Wyss Institute at Harvard University

The Wyss Institute at Harvard University

» Timelines » The Wyss Institute at Harvard University

The Wyss Institute at Harvard University

HQ Country
United States
Parent Company
Filtered by:
The Wyss Institute at Harvard University
10 Apr

Robot autonomously builds erosion barriers

Along developed riverbanks, physical barriers can help contain flooding and combat erosion. In arid regions, check dams can help retain soil after rainfall and restore damaged landscapes.
4 Feb

A safe, wearable soft sensor

Children born prematurely often develop neuromotor and cognitive developmental disabilities. The best way to reduce the impacts of those disabilities is to catch them early through a series of cognitive and motor tests. But accurately measuring and recording the motor functions of small children is tricky.
1 Jan

Robots with sticky feet

Jet engines can have up to 25,000 individual parts, making regular maintenance a tedious task that can take over a month per engine. Many components are located deep inside the engine and cannot be inspected without taking the machine apart, adding time and costs to maintenance. This problem is not only confined to jet engines, either; many complicated, expensive machines.
21 Dec

Predicting leaky heart valves with 3D printing

Researchers have created a novel 3D printing workflow that allows cardiologists to evaluate how different valve sizes will interact with each patient's unique anatomy, before the medical procedure is actually performed.
24 Sep

Personalized soft exosuit breaks new ground

Fully wearable soft exosuit with automatic tuning helps users save energy and walk outside over difficult terrain.
11 Sep

Printing with sound

Harvard University researchers have developed a new printing method that uses sound waves to generate droplets from liquids with an unprecedented range of composition and viscosity. This technique could finally enable the manufacturing of many new biopharmaceuticals, cosmetics, and food and expand the possibilities of optical and conductive materials.
24 Aug

Smart Materials as Structural Electronics and Electrics 2019-2029

IDTechEx Report: Dr Peter Harrop, Dr Jon Harrop, Dr Khasha Ghaffarzadeh and Luke Gear
14 Aug

Soft multifunctional robots get really small

Robots could be safely deployed in difficult-to-access environments, such as in delicate surgical procedures in the human body.
2 Aug

Gentle robotic hand for sea life

The open ocean is the largest and least explored environment on Earth, estimated to hold up to a million species that have yet to be described. However, many of those organisms are soft-bodied - like jellyfish, squid, and octopuses - and are difficult to capture for study with existing underwater tools, which all too frequently damage or destroy them. Now, a new device safely traps delicate sea creatures inside a folding polyhedral enclosure and lets them go without harm using a novel, origami-inspired design.
9 Jul

Robotic cockroach can explore underwater environments

In nature, cockroaches can survive underwater for up to 30 minutes. Now, a robotic cockroach can do even better. Harvard's Ambulatory Microrobot, known as HAMR, can walk on land, swim on the surface of water, and walk underwater for as long as necessary, opening up new environments for this little bot to explore.
7 Jun

Mimicking human organs through bioengineering

Sensera Inc is adapting its technology for new applications in bioengineering. The company's MEMS, or MicroElectroMechanical Systems, technology is now being used at Harvard University in the creation of microfluidic devices, which mimic the functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier.
30 May

Wave, Tidal and Hydro Power 1W-10MW 2018-2038

IDTechEx Report: Dr Peter Harrop
29 Mar

Haptics 2018-2028: Technologies, Markets and Players

IDTechEx Report: James Hayward
16 Mar

Personalised robotic exosuits

When it comes to soft assistive devices — like the wearable exosuit being created by the Harvard Biodesign Lab — the wearer and the robot need to be in sync. But every human moves a bit differently, and tailoring the robot's parameters to an individual user is a time-consuming and inefficient process.
5 Mar

3D printing method embeds sensing capabilities in robotic actuators

Soft robots that can sense touch, pressure, movement and temperature.
24 Jan

Rotational 3D printing technique yields high-performance composites

Nature has produced exquisite composite materials—wood, bone, teeth, and shells, for example—that combine light weight and density with desirable mechanical properties such as stiffness, strength and damage tolerance.
24 Jan

Millimeter-scale robot opens new avenues for microsurgery

The milliDelta design incorporates a composite laminate structure with embedded flexural joints that approximate the more complicated joints found in large scale Delta robots.
26 Dec

Molecular Robotics capitalizes on recent explosion of technologies

Collaborations between nanotechnologists, synthetic biologists, and computer scientists create nanoscale tools that could revolutionize fields from cancer diagnostics to materials science.
20 Dec

Invasive and Non-Invasive Neural Interfaces: Forecasts and Applications 2018-2028

IDTechEx Report:
30 Nov

Artificial muscles give soft robots superpowers

Soft robotics has made leaps and bounds over the last decade as researchers around the world have experimented with different materials and designs to allow once rigid, jerky machines to bend and flex in ways that mimic and can interact more naturally with living organisms. However, increased flexibility and dexterity has a trade-off of reduced strength, as softer materials are generally not as strong or resilient as inflexible ones, which limits their use.