1. | EXECUTIVE SUMMARY |
1.1. | Overview of electrolyzer technologies |
1.2. | Water electrolyzer technology comparison - current density & voltage (1) |
1.3. | Water electrolyzer technology comparison - current density & voltage (2) |
1.4. | AEL materials & components summary |
1.5. | AEL materials & components summary |
1.6. | AEL system suppliers by type (atmospheric, pressurized, advanced) |
1.7. | AEL component supply chain |
1.8. | AEL - electrodes & catalysts summary |
1.9. | AEL - porous diaphragm summary |
1.10. | AEL - bipolar plate (BPP) summary |
1.11. | AEL - porous transport layer (PTL) summary |
1.12. | PEM electrolyzer component summary |
1.13. | PEMEL materials & components summary |
1.14. | PEMEL stack suppliers |
1.15. | PEMEL component supply chain (1/2) |
1.16. | PEMEL component supply chain (2/2) |
1.17. | PEMEL - proton exchange membrane summary |
1.18. | PEMEL - catalysts (anode & cathode) summary |
1.19. | PEMEL - CCM / MEA summary |
1.20. | PEMEL - porous transport layer (PTL) & gas diffusion layer (GDL) summary |
1.21. | PEMEL - bipolar plate (BPP) & coating summary |
1.22. | AEMEL materials & components summary |
1.23. | AEMEL stack & anion exchange membrane suppliers |
1.24. | AEMEL - anion exchange membrane summary |
1.25. | AEMEL - electrodes / catalysts and CCM / MEA summary |
1.26. | AEMEL - bipolar plates, porous transport layers, gas diffusion layers |
1.27. | Gaskets for AEL, PEMEL & AEMEL |
1.28. | SOEC materials & components summary |
1.29. | SOEC materials & components summary |
1.30. | SOEC & SOFC system suppliers |
1.31. | SOEC component supply chain |
1.32. | SOEC - electrode electrolyte assembly (EEA) (1) |
1.33. | SOEC - electrode electrolyte assembly (EEA) (2) |
1.34. | SOEC - interconnects, coatings & contact layers summary |
1.35. | SOEC - gaskets & sealants summary |
1.36. | End plates for electrolyzers (AEL, PEMEL, AEMEL, SOEC) |
1.37. | Annual electrolyzer demand by technology (GW) |
1.38. | Electrolyzer stack cost forecasts by technology (US$/kW) |
1.39. | Electrolyzer stack cost forecasts by component (%) |
1.40. | Annual electrolyzer components market by technology (US$M) |
1.41. | AEL - components market forecast (US$ millions) |
1.42. | PEMEL - components market forecast (US$ millions) |
1.43. | SOEC - components market forecast (US$ millions) |
1.44. | AEMEL - components market forecast (US$M) |
1.45. | Access More With an IDTechEx Subscription |
2. | INTRODUCTION |
2.1. | Introduction to the hydrogen value chain |
2.1.1. | State of the hydrogen market today |
2.1.2. | Major drivers for hydrogen production & adoption |
2.1.3. | Key legislation & funding mechanisms driving hydrogen development |
2.1.4. | The colors of hydrogen |
2.1.5. | Hydrogen value chain overview |
2.1.6. | Why is green hydrogen needed? |
2.1.7. | Typical green hydrogen plant layout (1) |
2.1.8. | Typical green hydrogen plant layout (2) |
2.1.9. | Green hydrogen: Main water electrolyzer technologies |
2.1.10. | Cost comparison of different types of hydrogen |
2.1.11. | Overview of hydrogen storage |
2.1.12. | Overview of hydrogen distribution |
2.1.13. | Overview of hydrogen applications |
2.1.14. | Fuel cell technologies - overview |
2.1.15. | Automotive PEMFC demand far exceeds that of stationary applications |
2.1.16. | Hydrogen purity requirements |
2.1.17. | European hydrogen market - major developments |
2.1.18. | European hydrogen market - major setbacks & challenges |
2.1.19. | US hydrogen market drivers - pre-2025 |
2.1.20. | US hydrogen market challenges - 2024 and 2025 |
2.1.21. | Outlook on the low-carbon hydrogen industry in the US |
2.1.22. | Outlook on the low-carbon hydrogen industry globally |
2.2. | Overview of green hydrogen & water electrolysis technologies |
2.2.1. | Monopolar vs bipolar electrolyzers |
2.2.2. | Overview of electrolyzer technologies |
2.2.3. | Overview of electrolyzer technologies & market landscape |
2.2.4. | Electrolyzer cells, stacks and balance of plant (BOP) |
2.2.5. | Electrolyzer balance of plant (BOP) layout example |
2.2.6. | Electrolyzer BOP & typical system boundaries |
2.2.7. | Comparison of electrolyzer performance characteristics |
2.2.8. | Pros & cons of the four main electrolyzer technologies |
2.2.9. | Factors to consider in electrolyzer choice |
2.2.10. | Cost challenges in green hydrogen production |
2.2.11. | Why innovate electrolyzer materials & components? |
2.3. | Electrochemistry basics |
2.3.1. | Importance of active & stable electrocatalysts |
2.3.2. | Electrocatalyst activity metrics |
2.3.3. | Electrocatalyst stability & efficiency metrics |
2.3.4. | Origin of the volcano plot in electrocatalysis |
3. | ALKALINE ELECTROLYZER (AEL) MATERIALS & COMPONENTS |
3.1. | Overview of alkaline electrolyzers & component supply chain |
3.1.1. | Alkaline water electrolyzer (AEL) - brief historical background |
3.1.2. | Alkaline electrolyzer (AEL) plant - operating principles |
3.1.3. | Classifications of alkaline electrolyzers |
3.1.4. | Atmospheric vs pressurized alkaline electrolyzers |
3.1.5. | Alkaline water electrolyzer (AEL) - modern commercial cell & stack designs (1) |
3.1.6. | Alkaline water electrolyzer (AEL) - modern commercial cell & stack designs (2) |
3.1.7. | Next-gen alkaline electrolyzer stack design |
3.1.8. | Electrolyzer OEM's perspectives on stack component innovation |
3.1.9. | US DOE technical targets for AEL |
3.1.10. | AEL materials & components summary |
3.1.11. | AEL materials & components summary |
3.1.12. | Evolution of alkaline electrolyzer cell electrodes & porous transport layers |
3.1.13. | Key innovation focuses for AEL improvement |
3.1.14. | AEL materials & components supplier summary |
3.1.15. | AEL system suppliers by type (atmospheric, pressurized, advanced) |
3.1.16. | AEL component supply chain |
3.1.17. | AEL membrane & cell frame |
3.1.18. | AEL gasket / seal suppliers |
3.1.19. | AEL electrodes, catalysts & PTL/GDL suppliers |
3.1.20. | AEL electrodes, catalysts & PTL/GDL suppliers |
3.1.21. | AEL bipolar plate suppliers |
3.2. | AEL catalysts & electrodes |
3.2.1. | AEL - electrodes & catalysts summary |
3.2.2. | Zero-gap electrode configuration in alkaline electrolyzers |
3.2.3. | De Nora's zero-gap cell design |
3.2.4. | Substrates for alkaline electrolyzer electrodes (1) |
3.2.5. | Substrates for alkaline electrolyzer electrodes (2) |
3.2.6. | Key considerations in electrode design for alkaline electrolyzers |
3.2.7. | Cathode: Hydrogen evolution reaction (HER) |
3.2.8. | Alkaline HER volcano & cathode catalysts |
3.2.9. | Common AEL cathode catalysts used commercially (1) |
3.2.10. | Common AEL cathode catalysts used commercially (2) |
3.2.11. | Emerging AEL cathode catalyst formulations (1) |
3.2.12. | Emerging AEL cathode catalyst formulations (2) |
3.2.13. | Comparison of hydrogen evolution catalysts |
3.2.14. | Approaches to improved HER catalyst design |
3.2.15. | Anode: oxygen evolution reaction (OER) |
3.2.16. | Oxygen evolution catalysts - finding the sweet spot |
3.2.17. | Common AEL anode catalysts used commercially |
3.2.18. | Platinum group metals are used in some advanced alkaline stacks |
3.2.19. | Case study - Asahi Kasei's hydrogen evolution catalyst |
3.2.20. | Emerging AEL anode catalyst formulations |
3.2.21. | Comparison of oxygen evolution catalysts |
3.2.22. | Approaches to improved OER catalyst design |
3.2.23. | Catalyst coating techniques for electrodes (1) |
3.2.24. | Catalyst coating techniques for electrodes (2) |
3.2.25. | Electrode activation processes |
3.2.26. | Electrode manufacturing case study: Nel Hydrogen (1) |
3.2.27. | Electrode manufacturing case study: Nel Hydrogen (2) |
3.2.28. | De Nora - leading electrode manufacturer for alkaline electrolyzers (1) |
3.2.29. | De Nora - leading electrode manufacturer for alkaline electrolyzers (2) |
3.2.30. | Veco - high surface area electrodes |
3.2.31. | Stargate Hydrogen - ceramic-based electrodes |
3.2.32. | McPhy & Stargate Hydrogen partnership for ceramic electrodes |
3.2.33. | Bifunctional catalysts for alkaline & seawater electrolysis |
3.2.34. | Catrodes - bifunctional catalysts |
3.2.35. | Jolt Solutions' new manufacturing process for AEL electrodes |
3.2.36. | ENDURE project - porous transport electrodes (PTEs) for AEL (1) |
3.2.37. | ENDURE project - porous transport electrodes (PTEs) for AEL (2) |
3.2.38. | ENDURE project - porous transport electrodes (PTEs) for AEL (3) |
3.3. | AEL separators (diaphragms) |
3.3.1. | AEL - porous diaphragm summary |
3.3.2. | Alkaline electrolyzer diaphragms & separators |
3.3.3. | Comparison of common diaphragms |
3.3.4. | Materials used for construction of commercial diaphragms |
3.3.5. | Agfa's Zirfon separator - incumbent material for AEL diaphragms |
3.3.6. | Agfa's Zirfon separator - product lines & properties |
3.3.7. | Agfa's Zirfon separator - commercial advancement |
3.3.8. | Alternatives to Zirfon separators |
3.3.9. | Other alkaline electrolyzer separator suppliers (1) |
3.3.10. | Other alkaline electrolyzer separator suppliers (2) |
3.3.11. | Potential material suppliers for diaphragm manufacturing |
3.3.12. | Electrolyzer OEMs using their own diaphragm materials |
3.3.13. | Novamem's Slash porous alkaline diaphragm (1) |
3.3.14. | Novamem's Slash porous alkaline diaphragm (2) |
3.3.15. | Catalyst coated diaphragms for alkaline electrolyzers (1) |
3.3.16. | Catalyst coated diaphragms for alkaline electrolyzers (2) |
3.3.17. | Future directions for AEL separators |
3.3.18. | Improving porous diaphragms (1/2) |
3.3.19. | Improving porous diaphragms (2/2) |
3.3.20. | Ion-solvating membranes (ISMs) |
3.3.21. | Polybenzimidazole (PBI) ion-solvating membranes |
3.4. | AEL bipolar plates & porous transport layers (PTLs) |
3.4.1. | AEL - bipolar plate (BPP) summary |
3.4.2. | Other bipolar plate designs |
3.4.3. | AEL - porous transport layer (PTL) summary |
3.4.4. | Porous transport layers (PTLs) |
3.4.5. | Evolution of alkaline electrolyzer cell electrodes & porous transport layers |
3.5. | AEL gaskets & stack assembly components |
3.5.1. | Gaskets for AEL |
3.5.2. | AEL gaskets |
3.5.3. | AEL gasket materials (1) |
3.5.4. | AEL gasket materials (2) |
3.5.5. | AEL cell frame |
3.5.6. | AEL end plates & stack assembly (1) |
3.5.7. | AEL end plates & stack assembly (2) |
3.5.8. | Röchling Group - PEEK end plates & bolts |
4. | PROTON EXCHANGE MEMBRANE ELECTROLYZER (PEMEL) MATERIALS & COMPONENTS |
4.1. | Overview of the PEM electrolyzer component supply chain |
4.1.1. | Proton exchange membrane fuel cell - overview |
4.1.2. | PEM fuel cell component summary |
4.1.3. | Proton exchange membrane electrolyzer (PEMEL) - overview |
4.1.4. | PEM electrolyzer component summary |
4.1.5. | PEMEL materials & components summary |
4.1.6. | PEM electrolyzer vs PEM fuel cell components |
4.1.7. | PEMEL materials & components supplier summary (1/2) |
4.1.8. | PEMEL materials & components supplier summary (2/2) |
4.1.9. | PEMEL stack suppliers |
4.1.10. | PEMEL component supply chain (1/2) |
4.1.11. | PEMEL component supply chain (2/2) |
4.1.12. | PEMEL membrane suppliers |
4.1.13. | PEMEL gasket / seal suppliers |
4.1.14. | PEMEL anode titanium PTLs |
4.1.15. | PEMEL cathode carbon GDLs |
4.1.16. | PEMEL bipolar plate manufacturers |
4.1.17. | PEMEL catalyst suppliers |
4.1.18. | PEMEL catalyst coated membrane (CCM) suppliers |
4.1.19. | PEMEL coating equipment / services suppliers |
4.2. | PEMEL catalysts & electrodes |
4.2.1. | PEMEL - catalysts (anode & cathode) summary |
4.2.2. | Cathode: Hydrogen evolution reaction (HER) |
4.2.3. | Acidic HER volcano & cathode catalysts |
4.2.4. | Commercial platinum on carbon (Pt/C) catalysts |
4.2.5. | Influence of carbon black support on Pt/C |
4.2.6. | Nippon Steel Chemical & Material - mesoporous carbon support for Pt/C catalysts |
4.2.7. | Comparison of HER electrocatalysts |
4.2.8. | Future directions for HER catalysts |
4.2.9. | Anode: Oxygen evolution reaction (OER) |
4.2.10. | Acidic OER volcano & cathode catalysts |
4.2.11. | Commercial iridium-based catalysts |
4.2.12. | Ir-Ru mixed metal oxide (MMO) catalysts |
4.2.13. | Ames Goldsmith Ceimig case study |
4.2.14. | Ames Goldsmith Ceimig - new Ir-Pt OER catalyst |
4.2.15. | Heraeus - new supported IrOx OER catalyst |
4.2.16. | Smoltek - new nanostructured catalysts |
4.2.17. | Comparison of OER electrocatalysts |
4.2.18. | Future directions for OER catalysts |
4.2.19. | Catalyst degradation mechanisms |
4.2.20. | Catalyst degradation examples |
4.2.21. | Electrocatalyst production overview |
4.2.22. | Example Pt/C production process |
4.2.23. | Recent trends from precious metal catalyst manufacturers |
4.2.24. | 3M's nanostructure iridium catalyst (1) |
4.2.25. | 3M's nanostructure iridium catalyst (2) |
4.2.26. | Calicat - using AI to develop PGM-free PEM electrolyzer catalysts |
4.3. | Proton exchange membranes (PEMs) |
4.3.1. | PEMEL - proton exchange membrane summary |
4.3.2. | Proton exchange membranes - brief history, functions & materials |
4.3.3. | PEM fuel cell vs electrolyzer membranes |
4.3.4. | Key parameters defining PFSA ionomer structure & properties |
4.3.5. | Overview of factors causing PEM membrane degradation |
4.3.6. | Historical perspective on membrane manufacturers & key properties |
4.3.7. | Nafion - the market leading membrane |
4.3.8. | Chemours' Nafion properties & grades |
4.3.9. | Pros & cons of Nafion & PFSA membranes |
4.3.10. | Proton exchange membrane market landscape |
4.3.11. | Leading modern PFSA membranes - key players & properties |
4.3.12. | Comparison of PFSA membrane properties |
4.3.13. | Ion exchange membrane material benchmarking - PEM fuel cells |
4.3.14. | Ion exchange membrane material benchmarking - PEM water electrolyzers |
4.3.15. | Example supply chain for proton exchange membranes - Gore |
4.3.16. | Future directions for MEAs: H2/O2 recombination layer |
4.3.17. | Chemours gas recombination catalyst additive research |
4.3.18. | Reducing PEMEL membrane thickness without impacting safety (1) |
4.3.19. | Minimizing LCOH with proton exchange membranes (PEM) |
4.3.20. | High-temperature proton exchange membranes |
4.3.21. | Innovations in PEMFC membranes may influence PEMEL (1) |
4.3.22. | Innovations in PEMFC membranes may influence PEMEL (2) |
4.3.23. | Ongoing concerns with PFAS |
4.3.24. | Hydrocarbons as proton exchange membranes |
4.3.25. | Alternative PEM materials: Hydrocarbon IEMs |
4.3.26. | Toray's hydrocarbon proton exchange membrane |
4.3.27. | Assessment of hydrocarbon membranes |
4.3.28. | Benchmarking of Ionomr membrane against incumbent PFAS membrane |
4.4. | Proton exchange membrane innovations & manufacturing |
4.4.1. | Fluoropolymers in the polymer pyramid |
4.4.2. | PFSA ionomer design |
4.4.3. | PFSA membrane extrusion casting process |
4.4.4. | PFSA membrane solution casting process |
4.4.5. | Special release membrane for PFSA solution casting process |
4.4.6. | PFSA membrane dispersion casting process |
4.4.7. | Melt-blowing PEM manufacturing process - NRC Canada |
4.4.8. | Improvements to PFSA membranes |
4.4.9. | Trade-offs in optimizing membrane performance |
4.4.10. | Improving dimensional and mechanical stability using simultaneous stretching |
4.4.11. | Reinforced PFAS membranes: Multilayer vs woven membranes |
4.4.12. | Chemours reinforced Nafion membranes |
4.4.13. | Gore reinforced SELECT membranes |
4.4.14. | Reinforcing ion exchange membranes using multilayer co-extrusion |
4.4.15. | Material companies are venturing into membrane reinforcement |
4.4.16. | Innovation areas for reinforced multilayer IEMs |
4.4.17. | PFSA composite materials |
4.5. | Catalyst coated membranes (CCMs) for PEMELs |
4.5.1. | PEMEL - CCM / MEA summary |
4.5.2. | PEMEL vs PEMFC membrane electrode assembly |
4.5.3. | Typical catalyst coated membrane (CCM) |
4.5.4. | CCM production technologies |
4.5.5. | Comparison of coating processes |
4.5.6. | Roll-to-roll CCM production processes (1/2) |
4.5.7. | Roll-to-roll CCM production processes (2/2) |
4.5.8. | RWTH Aachen & Laufenberg's research into CCM production |
4.5.9. | Fraunhofer ISE MEA research (1/2) |
4.5.10. | Fraunhofer ISE MEA research (2/2) |
4.5.11. | Catalyst ink formulation - key considerations |
4.5.12. | Future directions for MEAs: Understanding degradation mechanisms |
4.5.13. | Future directions for MEAs: Iridium deposition on GDL/PTL using SparkNano's sALD |
4.5.14. | Future directions for MEAs: Iridium deposition on GDL/PTL using Toshiba's vacuum sputtering technology |
4.5.15. | Future directions for MEAs: Direct membrane deposition (DMD) |
4.5.16. | Future directions for MEAs: H2/O2 recombination layer |
4.6. | PEMEL gas diffusion layers (GDLs) & porous transport layers (PTLs) |
4.6.1. | PEMEL - porous transport layer (PTL) & gas diffusion layer (GDL) summary |
4.6.2. | PTL/GDL characteristics & materials |
4.6.3. | Typical GDL structure |
4.6.4. | Cathode GDL: Hydrophobic treatment |
4.6.5. | Cathode GDL production process |
4.6.6. | Cellulosic fiber GDL: No MPL required |
4.6.7. | GDL innovation trends |
4.6.8. | AvCarb - advancements in GDL designs for fuel cells |
4.6.9. | GDL supply chain for FCEV stacks |
4.6.10. | Key GDL suppliers |
4.6.11. | Titanium porous transport layer (PTL) |
4.6.12. | Anode PTL: Sintered porous titanium |
4.6.13. | Interactions between PTL & catalyst layer |
4.6.14. | Bekaert - sintered titanium PTL |
4.6.15. | Caplinq - example Ti PTL production process |
4.6.16. | Shinsung C&T - electronics component manufacturer venturing into electrolyzer materials |
4.6.17. | Sintered powder Ti felt production |
4.6.18. | Future directions for anode Ti PTL |
4.7. | PEMEL bipolar plates (BPPs) & coatings |
4.7.1. | PEMEL - bipolar plate (BPP) & coating summary |
4.7.2. | Bipolar plate flow fields |
4.7.3. | Comparison of flow fields |
4.7.4. | Future directions for bipolar plate flow fields |
4.7.5. | Bipolar plate materials overview |
4.7.6. | PEMEL cannot use graphite BPPs |
4.7.7. | Bipolar plate manufacturing methods focus on metal plates |
4.7.8. | Graebener - bipolar plate production technology |
4.7.9. | Consortium approach for production of BPPs |
4.7.10. | Feintool & SITEC bipolar plate manufacturing process |
4.7.11. | Commercial bipolar plate: Platinum-coated titanium |
4.7.12. | HEF Groupe: New PVD coating technologies |
4.7.13. | Gold cathode & platinum anode BPP coating |
4.7.14. | Ionbond - new coating technology |
4.7.15. | Ti-coated stainless steel BPPs |
4.7.16. | Sydrogen - new BPP coating technology |
4.7.17. | James Cropper's BPP & PTL coating technology |
4.7.18. | Future coatings for metal bipolar plates |
4.7.19. | Carbon composite bipolar plate materials |
4.7.20. | Conventional metallic bipolar plate process |
4.7.21. | Advanced photochemical etching processes |
4.7.22. | Comparison of production methods |
4.8. | PEMEL gaskets & stack assembly components |
4.8.1. | Gaskets for PEMEL |
4.8.2. | PEMEL gasket functions & requirements |
4.8.3. | Gasket design considerations |
4.8.4. | Gasket material selection (1/2) |
4.8.5. | Gasket material selection (2/2) |
4.8.6. | O-ring & injection molded gaskets |
4.8.7. | WEVO-CHEMIE - liquid gaskets for electrolyzers |
4.8.8. | PEMEL cell frames |
4.8.9. | PEMEL end plates & stack assembly (1/2) |
4.8.10. | Stack assembly example - Plug Power |
4.8.11. | Syensqo - PPS endplates for PEM fuel cells |
5. | ANION EXCHANGE MEMBRANE ELECTROLYZER (AEMEL) MATERIALS & COMPONENTS |
5. | ANION EXCHANGE MEMBRANE ELECTROLYZER (AEMEL) MATERIALS & COMPONENTS |
5.1. | Overview of AEM electrolyzer materials |
5.1. | Overview of AEM electrolyzer materials |
5.1.1. | Anion exchange membrane electrolyzer (AEMEL) plant - operating principles |
5.1.1. | Anion exchange membrane electrolyzer (AEMEL) plant - operating principles |
5.1.2. | The case for AEMEL development |
5.1.2. | The case for AEMEL development |
5.1.3. | AEMEL's similarities to AEL & PEMEL |
5.1.3. | AEMEL's similarities to AEL & PEMEL |
5.1.4. | Why AEM electrolyzer development is progressing quickly |
5.1.4. | Why AEM electrolyzer development is progressing quickly |
5.1.5. | AEMEL materials & components summary |
5.1.5. | AEMEL materials & components summary |
5.1.6. | Enapter - the leading AEMEL company |
5.1.6. | Enapter - the leading AEMEL company |
5.1.7. | AEMEL stack & anion exchange membrane suppliers |
5.1.7. | AEMEL stack & anion exchange membrane suppliers |
5.2. | Anion exchange membranes (AEMs) |
5.2. | Anion exchange membranes (AEMs) |
5.2.1. | AEMEL - anion exchange membrane summary |
5.2.1. | AEMEL - anion exchange membrane summary |
5.2.2. | Anion exchange membranes (AEMs) in AEMELs |
5.2.2. | Anion exchange membranes (AEMs) in AEMELs |
5.2.3. | Anion exchange membrane (AEM) materials |
5.2.3. | Anion exchange membrane (AEM) materials |
5.2.4. | AEM material challenges & prospects |
5.2.4. | AEM material challenges & prospects |
5.2.5. | Comparison of commercial AEM materials |
5.2.5. | Comparison of commercial AEM materials |
5.2.6. | High-performance AEMELs require engineering beyond just membranes |
5.2.6. | High-performance AEMELs require engineering beyond just membranes |
5.2.7. | Commercial hydrocarbon AEM material examples (I) |
5.2.7. | Commercial hydrocarbon AEM material examples (I) |
5.2.8. | Commercial hydrocarbon AEM material examples (II) |
5.2.8. | Commercial hydrocarbon AEM material examples (II) |
5.2.9. | Versogen's anion exchange membrane |
5.2.9. | Versogen's anion exchange membrane |
5.2.10. | Orion polymer (1) |
5.2.10. | Orion polymer (1) |
5.2.11. | Orion polymer (2) |
5.2.11. | Orion polymer (2) |
5.2.12. | Enapter - the leading AEMEL company |
5.2.12. | Enapter - the leading AEMEL company |
5.2.13. | AEMEL stack & anion exchange membrane suppliers |
5.2.13. | AEMEL stack & anion exchange membrane suppliers |
5.2.14. | Ion exchange membrane material benchmarking - AEM water electrolyzers |
5.2.14. | Ion exchange membrane material benchmarking - AEM water electrolyzers |
5.2.15. | Gen-Hy's vertical integration for AEM electrolyzers |
5.2.15. | Gen-Hy's vertical integration for AEM electrolyzers |
5.3. | AEMEL electrodes, bipolar plates, transport layers & other components |
5.3. | AEMEL electrodes, bipolar plates, transport layers & other components |
5.3.1. | AEMEL - electrodes / catalysts and CCM / MEA summary |
5.3.1. | AEMEL - electrodes / catalysts and CCM / MEA summary |
5.3.2. | AEMEL catalysts overview |
5.3.2. | AEMEL catalysts overview |
5.3.3. | AEMEL catalysts summary |
5.3.3. | AEMEL catalysts summary |
5.3.4. | AEMEL membrane electrode assembly (MEA) |
5.3.4. | AEMEL membrane electrode assembly (MEA) |
5.3.5. | Commercial AEMEL MEA design |
5.3.5. | Commercial AEMEL MEA design |
5.3.6. | TNO and partners aim for AEM electrolyzer component standardization |
5.3.6. | TNO and partners aim for AEM electrolyzer component standardization |
5.3.7. | NovaMea - new AEMEL membranes, ionomers and catalysts (1) |
5.3.7. | NovaMea - new AEMEL membranes, ionomers and catalysts (1) |
5.3.8. | NovaMea - new AEMEL membranes, ionomers and catalysts (2) |
5.3.8. | NovaMea - new AEMEL membranes, ionomers and catalysts (2) |
5.3.9. | AEMEL - bipolar plates, porous transport layers, gas diffusion layers |
5.3.9. | AEMEL - bipolar plates, porous transport layers, gas diffusion layers |
5.3.10. | Gaskets for AEMEL |
5.3.10. | Gaskets for AEMEL |
6. | SOLID OXIDE ELECTROLYZERS (SOEC) MATERIALS & COMPONENTS |
6. | SOLID OXIDE ELECTROLYZERS (SOEC) MATERIALS & COMPONENTS |
6.1. | Overview of SOEC component supply chain |
6.1. | Overview of SOEC component supply chain |
6.1.1. | Solid oxide electrolyzer (SOEC) |
6.1.1. | Solid oxide electrolyzer (SOEC) |
6.1.2. | US DOE technical targets for SOEC |
6.1.2. | US DOE technical targets for SOEC |
6.1.3. | SOEC materials & components summary |
6.1.3. | SOEC materials & components summary |
6.1.4. | SOEC materials & components summary |
6.1.4. | SOEC materials & components summary |
6.1.5. | SOEC materials & components supplier summary |
6.1.5. | SOEC materials & components supplier summary |
6.1.6. | SOEC & SOFC stack suppliers |
6.1.6. | SOEC & SOFC stack suppliers |
6.1.7. | SOEC component supply chain |
6.1.7. | SOEC component supply chain |
6.1.8. | SOEC electrolyte & electrode material suppliers |
6.1.8. | SOEC electrolyte & electrode material suppliers |
6.1.9. | SOEC sealing & insulating material suppliers |
6.1.9. | SOEC sealing & insulating material suppliers |
6.1.10. | SOEC interconnect metals & coatings material suppliers |
6.1.10. | SOEC interconnect metals & coatings material suppliers |
6.2. | SOEC electrolytes |
6.2. | SOEC electrolytes |
6.2.1. | SOEC - electrode electrolyte assembly (EEA) (1) |
6.2.1. | SOEC - electrode electrolyte assembly (EEA) (1) |
6.2.2. | SOEC - electrode electrolyte assembly (EEA) (2) |
6.2.2. | SOEC - electrode electrolyte assembly (EEA) (2) |
6.2.3. | SOEC electrolyte functions & requirements |
6.2.3. | SOEC electrolyte functions & requirements |
6.2.4. | Yttria-stabilized zirconia (YSZ) electrolyte |
6.2.4. | Yttria-stabilized zirconia (YSZ) electrolyte |
6.2.5. | YSZ electrolyte technical & commercial considerations |
6.2.5. | YSZ electrolyte technical & commercial considerations |
6.2.6. | Alternative electrolyte materials |
6.2.6. | Alternative electrolyte materials |
6.2.7. | Impact of LT-SOFC electrolyte development |
6.2.7. | Impact of LT-SOFC electrolyte development |
6.2.8. | Comparison of electrolyte materials |
6.2.8. | Comparison of electrolyte materials |
6.2.9. | Advanced Ionics' lower temperature electrolyte and SOEC |
6.2.9. | Advanced Ionics' lower temperature electrolyte and SOEC |
6.3. | SOEC electrodes |
6.3. | SOEC electrodes |
6.3.1. | Cathode: Hydrogen evolution reaction (HER) |
6.3.1. | Cathode: Hydrogen evolution reaction (HER) |
6.3.2. | Ni cermet - the conventional material |
6.3.2. | Ni cermet - the conventional material |
6.3.3. | Improving cathode materials |
6.3.3. | Improving cathode materials |
6.3.4. | Anode: Oxygen evolution reaction (OER) |
6.3.4. | Anode: Oxygen evolution reaction (OER) |
6.3.5. | LSM-YSZ - the conventional material |
6.3.5. | LSM-YSZ - the conventional material |
6.3.6. | LSC & LSCF - new state-of-the-art materials (1/2) |
6.3.6. | LSC & LSCF - new state-of-the-art materials (1/2) |
6.3.7. | LSC & LSCF - new state-of-the-art materials (2/2) |
6.3.7. | LSC & LSCF - new state-of-the-art materials (2/2) |
6.3.8. | Alternative anode materials & innovations |
6.3.8. | Alternative anode materials & innovations |
6.3.9. | SOEC component degradation challenges |
6.3.9. | SOEC component degradation challenges |
6.3.10. | Degradation mechanisms & mitigation strategies for SOECs & SOFCs |
6.3.10. | Degradation mechanisms & mitigation strategies for SOECs & SOFCs |
6.4. | SOEC interconnects, coatings & contact layers |
6.4. | SOEC interconnects, coatings & contact layers |
6.4.1. | SOEC - interconnects, coatings & contact layers summary |
6.4.1. | SOEC - interconnects, coatings & contact layers summary |
6.4.2. | SOEC interconnect functions & requirements |
6.4.2. | SOEC interconnect functions & requirements |
6.4.3. | Ceramic interconnects |
6.4.3. | Ceramic interconnects |
6.4.4. | Improving ceramic interconnects |
6.4.4. | Improving ceramic interconnects |
6.4.5. | Metallic interconnects |
6.4.5. | Metallic interconnects |
6.4.6. | Protective coatings for metallic interconnects |
6.4.6. | Protective coatings for metallic interconnects |
6.4.7. | fuelcellmaterials' coating for metallic interconnects |
6.4.7. | fuelcellmaterials' coating for metallic interconnects |
6.4.8. | Contact layers for metallic interconnects |
6.4.8. | Contact layers for metallic interconnects |
6.4.9. | Alleima's pre-coated stainless steel |
6.4.9. | Alleima's pre-coated stainless steel |
6.4.10. | Contact layer commercial example |
6.4.10. | Contact layer commercial example |
6.5. | SOEC sealants & insulating materials |
6.5. | SOEC sealants & insulating materials |
6.5.1. | SOEC - gaskets & sealants summary |
6.5.1. | SOEC - gaskets & sealants summary |
6.5.2. | SOEC sealant functions & requirements |
6.5.2. | SOEC sealant functions & requirements |
6.5.3. | Compressive sealants |
6.5.3. | Compressive sealants |
6.5.4. | Flexitallic - Thermiculite sealing technology (1) |
6.5.4. | Flexitallic - Thermiculite sealing technology (1) |
6.5.5. | Flexitallic - Thermiculite sealing technology (2) |
6.5.5. | Flexitallic - Thermiculite sealing technology (2) |
6.5.6. | Glass-ceramic sealants |
6.5.6. | Glass-ceramic sealants |
6.5.7. | Mo-Sci - viscous compliant sealants |
6.5.7. | Mo-Sci - viscous compliant sealants |
6.5.8. | SOEC insulation functions & requirements |
6.5.8. | SOEC insulation functions & requirements |
6.5.9. | SOEC insulating materials |
6.5.9. | SOEC insulating materials |
6.6. | SOEC cell manufacturing & stack assembly |
6.6. | SOEC cell manufacturing & stack assembly |
6.6.1. | Tubular vs planar SOEC & SOFC cells |
6.6.1. | Tubular vs planar SOEC & SOFC cells |
6.6.2. | Solid oxide cell configurations |
6.6.2. | Solid oxide cell configurations |
6.6.3. | Ceramic cell manufacturing process (1) |
6.6.3. | Ceramic cell manufacturing process (1) |
6.6.4. | Ceramic cell manufacturing process (2) |
6.6.4. | Ceramic cell manufacturing process (2) |
6.6.5. | Manufacturing process variations & new processes |
6.6.5. | Manufacturing process variations & new processes |
6.6.6. | Idaho National Lab - advanced sintering technology for solid oxide cells |
6.6.6. | Idaho National Lab - advanced sintering technology for solid oxide cells |
6.6.7. | Metal-supported cell features & manufacturing |
6.6.7. | Metal-supported cell features & manufacturing |
6.6.8. | Ceres Power - commercial SOFC example |
6.6.8. | Ceres Power - commercial SOFC example |
6.6.9. | Metallic component manufacturing, component integration & assembly |
6.6.9. | Metallic component manufacturing, component integration & assembly |
6.6.10. | Elcogen - commercial SOEC cell example |
6.6.10. | Elcogen - commercial SOEC cell example |
6.6.11. | Topsoe's SOEC cell development & outlook |
6.6.11. | Topsoe's SOEC cell development & outlook |
6.6.12. | OxEon Energy - SOEC cell & stack design |
6.6.12. | OxEon Energy - SOEC cell & stack design |
7. | ELECTROLYZER MANUFACTURING & MATERIAL MARKET TRENDS |
7. | ELECTROLYZER MANUFACTURING & MATERIAL MARKET TRENDS |
7.1. | Electrolyzer manufacturing innovations |
7.1. | Electrolyzer manufacturing innovations |
7.1.1. | Manufacturing scale-up as a key lever for electrolyzer cost reductions |
7.1.1. | Manufacturing scale-up as a key lever for electrolyzer cost reductions |
7.1.2. | Accelera by Cummins: Strategies for LCOH reduction |
7.1.2. | Accelera by Cummins: Strategies for LCOH reduction |
7.1.3. | thyssenkrupp nucera: Perspectives from a large electrolyzer OEM |
7.1.3. | thyssenkrupp nucera: Perspectives from a large electrolyzer OEM |
7.1.4. | Electrolyzer manufacturing challenges overview |
7.1.4. | Electrolyzer manufacturing challenges overview |
7.1.5. | Simultaneous engineering in electrolyzer design |
7.1.5. | Simultaneous engineering in electrolyzer design |
7.1.6. | thyssenkrupp - scaling up electrolyzer & fuel cell manufacturing |
7.1.6. | thyssenkrupp - scaling up electrolyzer & fuel cell manufacturing |
7.1.7. | Hitachi High-Tech - in-line inspection for fuel cell & electrolyzers |
7.1.7. | Hitachi High-Tech - in-line inspection for fuel cell & electrolyzers |
7.1.8. | AVL - optimization & testing for fuel cells & electrolyzers |
7.1.8. | AVL - optimization & testing for fuel cells & electrolyzers |
7.2. | Alternatives to PFAS in ion exchange membranes |
7.2. | Alternatives to PFAS in ion exchange membranes |
7.2.1. | PFAS in ion exchange membranes (IEMs) |
7.2.1. | PFAS in ion exchange membranes (IEMs) |
7.2.2. | PFAS in IEMs: Outlook by application |
7.2.2. | PFAS in IEMs: Outlook by application |
7.2.3. | Chemours' focus on responsible manufacturing of Nafion |
7.2.3. | Chemours' focus on responsible manufacturing of Nafion |
7.2.4. | Key parameters required to replace PFAS membranes |
7.2.4. | Key parameters required to replace PFAS membranes |
7.2.5. | Emerging alternative membranes |
7.2.5. | Emerging alternative membranes |
7.2.6. | Hydrocarbon membranes are leading competitors to PFAS-containing membranes |
7.2.6. | Hydrocarbon membranes are leading competitors to PFAS-containing membranes |
7.2.7. | Alternative polymer materials for ion exchange membranes |
7.2.7. | Alternative polymer materials for ion exchange membranes |
7.2.8. | Boron-containing hydrocarbon membranes |
7.2.8. | Boron-containing hydrocarbon membranes |
7.2.9. | Other non-PBI containing ion solvating membranes |
7.2.9. | Other non-PBI containing ion solvating membranes |
7.2.10. | Glass-filled cross-linked PEEK for improved membrane stiffness |
7.2.10. | Glass-filled cross-linked PEEK for improved membrane stiffness |
7.2.11. | Bio-based PFSA-free membranes based on cellulose |
7.2.11. | Bio-based PFSA-free membranes based on cellulose |
7.2.12. | Inorganic and inorganic-organic hybrid ion exchange membranes |
7.2.12. | Inorganic and inorganic-organic hybrid ion exchange membranes |
7.2.13. | Inorganic membranes: Membrion |
7.2.13. | Inorganic membranes: Membrion |
7.2.14. | Metal-organic frameworks (MOFs) - overview |
7.2.14. | Metal-organic frameworks (MOFs) - overview |
7.2.15. | MOF applications in ion exchange membranes |
7.2.15. | MOF applications in ion exchange membranes |
7.2.16. | MOF-based ion exchange membranes are not ready for commercialization |
7.2.16. | MOF-based ion exchange membranes are not ready for commercialization |
7.2.17. | Commercial maturity of PFAS alternatives in ion exchange membranes |
7.2.17. | Commercial maturity of PFAS alternatives in ion exchange membranes |
7.3. | PFAS in seals & gaskets |
7.3. | PFAS in seals & gaskets |
7.3.1. | PFAS in seals and gaskets for high-tech applications |
7.3.1. | PFAS in seals and gaskets for high-tech applications |
7.3.2. | Common materials utilized for sealing applications |
7.3.2. | Common materials utilized for sealing applications |
7.3.3. | Fluoropolymers in the polymer pyramid |
7.3.3. | Fluoropolymers in the polymer pyramid |
7.3.4. | Dominance of PTFE & fluoroelastomers in sealing applications |
7.3.4. | Dominance of PTFE & fluoroelastomers in sealing applications |
7.3.5. | Sealing for the hydrogen value chain |
7.3.5. | Sealing for the hydrogen value chain |
7.3.6. | Sealing for the hydrogen value chain |
7.3.6. | Sealing for the hydrogen value chain |
7.3.7. | Sealing for the hydrogen value chain |
7.3.7. | Sealing for the hydrogen value chain |
7.3.8. | Sealing for the hydrogen value chain |
7.3.8. | Sealing for the hydrogen value chain |
7.3.9. | Electrolyzer gasket materials |
7.3.9. | Electrolyzer gasket materials |
7.3.10. | Electrolyzer gasket materials |
7.3.10. | Electrolyzer gasket materials |
7.3.11. | Gasket material selection |
7.3.11. | Gasket material selection |
7.3.12. | Gasket material selection |
7.3.12. | Gasket material selection |
7.3.13. | Application example 2 - hydrogen value chain |
7.3.13. | Application example 2 - hydrogen value chain |
7.3.14. | European Sealing Association (ESA) opinions on PFAS bans |
7.3.14. | European Sealing Association (ESA) opinions on PFAS bans |
7.3.15. | Seals and gaskets supply chain overview |
7.3.15. | Seals and gaskets supply chain overview |
7.3.16. | Seals and gaskets supply chain: Selected companies |
7.3.16. | Seals and gaskets supply chain: Selected companies |
7.3.17. | Materials suppliers for seals and gaskets: Non-PFAS and PFAS materials |
7.3.17. | Materials suppliers for seals and gaskets: Non-PFAS and PFAS materials |
7.3.18. | Materials suppliers for seals and gaskets (1) |
7.3.18. | Materials suppliers for seals and gaskets (1) |
7.3.19. | Materials suppliers for seals and gaskets (2) |
7.3.19. | Materials suppliers for seals and gaskets (2) |
7.3.20. | Potential PFAS-free alternatives for sealing applications in the hydrogen sector |
7.3.20. | Potential PFAS-free alternatives for sealing applications in the hydrogen sector |
7.3.21. | Potential for PFAS-free alternatives for sealing applications |
7.3.21. | Potential for PFAS-free alternatives for sealing applications |
7.3.22. | Trends towards liquid sealants supports non-PFAS sealing materials |
7.3.22. | Trends towards liquid sealants supports non-PFAS sealing materials |
7.3.23. | Cure mechanisms for liquid sealants |
7.3.23. | Cure mechanisms for liquid sealants |
7.3.24. | Key materials and players for liquid sealants |
7.3.24. | Key materials and players for liquid sealants |
7.3.25. | DuPont - PI for hydrogen sealing |
7.3.25. | DuPont - PI for hydrogen sealing |
7.3.26. | WEVO-CHEMIE - liquid sealants |
7.3.26. | WEVO-CHEMIE - liquid sealants |
7.3.27. | Syensqo's alternatives to fluoropolymers |
7.3.27. | Syensqo's alternatives to fluoropolymers |
7.3.28. | Omniseal Solutions - variety of PFAS alternatives |
7.3.28. | Omniseal Solutions - variety of PFAS alternatives |
7.3.29. | Freudenberg Sealing Technologies - view on regulations |
7.3.29. | Freudenberg Sealing Technologies - view on regulations |
7.3.30. | Freudenberg Sealing Technologies - new PU material |
7.3.30. | Freudenberg Sealing Technologies - new PU material |
7.3.31. | SGL Carbon - graphite sealants |
7.3.31. | SGL Carbon - graphite sealants |
7.3.32. | Metallic gaskets as PFAS alternatives |
7.3.32. | Metallic gaskets as PFAS alternatives |
7.3.33. | Summary and conclusions - PFAS alternatives for seals and gaskets |
7.3.33. | Summary and conclusions - PFAS alternatives for seals and gaskets |
7.4. | Platinum group metal (PGM) supply chains considerations |
7.4. | Platinum group metal (PGM) supply chains considerations |
7.4.1. | Critical minerals for the hydrogen economy |
7.4.1. | Critical minerals for the hydrogen economy |
7.4.2. | Global critical mineral supply chains |
7.4.2. | Global critical mineral supply chains |
7.4.3. | Clean energy applications competing for raw materials |
7.4.3. | Clean energy applications competing for raw materials |
7.4.4. | Green hydrogen's influence on minerals |
7.4.4. | Green hydrogen's influence on minerals |
7.4.5. | Platinum & iridium supply chain considerations |
7.4.5. | Platinum & iridium supply chain considerations |
7.4.6. | Historical iridium price volatility |
7.4.6. | Historical iridium price volatility |
7.4.7. | Historical iridium supply and demand |
7.4.7. | Historical iridium supply and demand |
7.4.8. | Will iridium supply limit the growth of PEMEL? |
7.4.8. | Will iridium supply limit the growth of PEMEL? |
7.4.9. | Precious metal supply risk |
7.4.9. | Precious metal supply risk |
7.4.10. | Heraeus' views on the iridium market |
7.4.10. | Heraeus' views on the iridium market |
7.4.11. | Heraeus' focus on ruthenium catalysts |
7.4.11. | Heraeus' focus on ruthenium catalysts |
7.4.12. | Heraeus - challenges in transitioning to new PEMEL catalysts |
7.4.12. | Heraeus - challenges in transitioning to new PEMEL catalysts |
7.4.13. | Importance of technological advancements & PGM recycling |
7.4.13. | Importance of technological advancements & PGM recycling |
7.4.14. | Heraeus - PGM recycling from electrolyzers & fuel cells |
7.4.14. | Heraeus - PGM recycling from electrolyzers & fuel cells |
7.4.15. | Fraunhofer IWKS - recovery of materials from end-of-life fuel cells |
7.4.15. | Fraunhofer IWKS - recovery of materials from end-of-life fuel cells |
7.5. | Considerations for hydrogen embrittlement in metallic components |
7.5. | Considerations for hydrogen embrittlement in metallic components |
7.5.1. | Hydrogen embrittlement & compatible metal alloys |
7.5.1. | Hydrogen embrittlement & compatible metal alloys |
7.5.2. | Influence of nickel in austenitic stainless steels for H2 applications |
7.5.2. | Influence of nickel in austenitic stainless steels for H2 applications |
7.5.3. | Influence of Ti in austenitic stainless steels for H2 applications |
7.5.3. | Influence of Ti in austenitic stainless steels for H2 applications |
8. | MARKET FORECASTS FOR ELECTROLYZER COMPONENTS |
8. | MARKET FORECASTS FOR ELECTROLYZER COMPONENTS |
8.1.1. | Forecasting methodology & assumptions (1) |
8.1.1. | Forecasting methodology & assumptions (1) |
8.1.2. | Forecasting methodology & assumptions (2) |
8.1.2. | Forecasting methodology & assumptions (2) |
8.1.3. | Annual electrolyzer demand by technology (GW) |
8.1.3. | Annual electrolyzer demand by technology (GW) |
8.1.4. | Electrolyzer stack cost forecasts by technology (US$/kW) |
8.1.4. | Electrolyzer stack cost forecasts by technology (US$/kW) |
8.1.5. | Electrolyzer stack cost forecasts by component (%) |
8.1.5. | Electrolyzer stack cost forecasts by component (%) |
8.1.6. | Annual electrolyzer components market by technology (US$M) |
8.1.6. | Annual electrolyzer components market by technology (US$M) |
8.1.7. | AEL - components forecast by area (1000s m2) |
8.1.7. | AEL - components forecast by area (1000s m2) |
8.1.8. | AEL - components forecast by weight (kilotonnes) |
8.1.8. | AEL - components forecast by weight (kilotonnes) |
8.1.9. | AEL - components market forecast (US$ millions) |
8.1.9. | AEL - components market forecast (US$ millions) |
8.1.10. | PEMEL - components forecast by area (1000s m2) |
8.1.10. | PEMEL - components forecast by area (1000s m2) |
8.1.11. | PEMEL - precious metals forecast by weight (tonnes) |
8.1.11. | PEMEL - precious metals forecast by weight (tonnes) |
8.1.12. | PEMEL - components forecast by weight (kilotonnes) |
8.1.12. | PEMEL - components forecast by weight (kilotonnes) |
8.1.13. | PEMEL - components market forecast (US$ millions) |
8.1.13. | PEMEL - components market forecast (US$ millions) |
8.1.14. | SOEC - metallic components forecast by weight (tonnes) |
8.1.14. | SOEC - metallic components forecast by weight (tonnes) |
8.1.15. | SOEC - ceramic components forecast by weight (tonnes) |
8.1.15. | SOEC - ceramic components forecast by weight (tonnes) |
8.1.16. | SOEC - components forecast by area (1000s m2) |
8.1.16. | SOEC - components forecast by area (1000s m2) |
8.1.17. | SOEC - components market forecast (US$ millions) |
8.1.17. | SOEC - components market forecast (US$ millions) |
8.1.18. | AEMEL - components forecast by area (1000s m2) |
8.1.18. | AEMEL - components forecast by area (1000s m2) |
8.1.19. | AEMEL - components forecast by weight (tonnes) |
8.1.19. | AEMEL - components forecast by weight (tonnes) |
8.1.20. | AEMEL - components market forecast (US$M) |
8.1.20. | AEMEL - components market forecast (US$M) |
9. | COMPANY PROFILES |
9. | COMPANY PROFILES |
9.1. | 1s1 Energy |
9.1. | 1s1 Energy |
9.2. | Agfa-Gevaert NV: Alkaline Electrolyzer Separator |
9.2. | Agfa-Gevaert NV: Alkaline Electrolyzer Separator |
9.3. | Alleima: Fuel Cell BPP & Interconnect Materials |
9.3. | Alleima: Fuel Cell BPP & Interconnect Materials |
9.4. | Ames Goldsmith Ceimig: PEMEL/FC Electrocatalysts |
9.4. | Ames Goldsmith Ceimig: PEMEL/FC Electrocatalysts |
9.5. | Asahi Kasei: Aqualyzer (Green Hydrogen) |
9.5. | Asahi Kasei: Aqualyzer (Green Hydrogen) |
9.6. | AvCarb |
9.6. | AvCarb |
9.7. | CellMo |
9.7. | CellMo |
9.8. | Ceres Power |
9.8. | Ceres Power |
9.9. | De Nora: Alkaline Electrolyzer Electrodes |
9.9. | De Nora: Alkaline Electrolyzer Electrodes |
9.10. | Evonik |
9.10. | Evonik |
9.11. | Fraunhofer IKTS: SOEC/SOFC Technology |
9.11. | Fraunhofer IKTS: SOEC/SOFC Technology |
9.12. | Fumatech |
9.12. | Fumatech |
9.13. | Heraeus: Catalysts for the Hydrogen Economy |
9.13. | Heraeus: Catalysts for the Hydrogen Economy |
9.14. | Hyproof Tech. |
9.14. | Hyproof Tech. |
9.15. | IHI Ionbond: Coatings for Bipolar Plates |
9.15. | IHI Ionbond: Coatings for Bipolar Plates |
9.16. | INEOS Electrochemical Solutions |
9.16. | INEOS Electrochemical Solutions |
9.17. | Ionomr Innovations |
9.17. | Ionomr Innovations |
9.18. | Ionomr Innovations |
9.18. | Ionomr Innovations |
9.19. | Jolt Solutions |
9.19. | Jolt Solutions |
9.20. | KnitMesh Technologies: Electrolyzer Electrodes & PTL/GDLs |
9.20. | KnitMesh Technologies: Electrolyzer Electrodes & PTL/GDLs |
9.21. | Nel ASA: AWE Electrodes & Manufacturing Facilities |
9.21. | Nel ASA: AWE Electrodes & Manufacturing Facilities |
9.22. | Nippon Steel Chemical & Material: Mesoporous Carbon Material |
9.22. | Nippon Steel Chemical & Material: Mesoporous Carbon Material |
9.23. | Orion Polymer |
9.23. | Orion Polymer |
9.24. | Shinsung C&T: EV Fire Protection & Electrolyzer Materials |
9.24. | Shinsung C&T: EV Fire Protection & Electrolyzer Materials |
9.25. | Stargate Hydrogen |
9.25. | Stargate Hydrogen |
9.26. | Teijin: Gas Diffusion Layer (GDL) for PEM Fuel Cells |
9.26. | Teijin: Gas Diffusion Layer (GDL) for PEM Fuel Cells |
9.27. | thyssenkrupp nucera |
9.27. | thyssenkrupp nucera |
9.28. | Versogen |
9.28. | Versogen |
9.29. | WEVO-CHEMIE: Hydrogen & RFB Applications |
9.29. | WEVO-CHEMIE: Hydrogen & RFB Applications |