| 1. | EXECUTIVE SUMMARY |
| 1.1. | Report Introduction |
| 1.2. | Power Electronics in Electric Vehicles |
| 1.3. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors |
| 1.4. | GaN vs SiC Potential in the Inverter |
| 1.5. | IDTechEx Inverter Benchmarking For Si, SiC, and GaN |
| 1.6. | Automotive GaN Device Suppliers are Growing |
| 1.7. | Progress of Different Applications of GaN |
| 1.8. | 200mm SiC Wafer Production Worldwide |
| 1.9. | Vertical Integration: Acquisitions and Collaborations |
| 1.10. | SiC Impact on the Inverter Cost |
| 1.11. | Si IGBT and SiC MOSFET Price Comparison |
| 1.12. | SiC MOSFET by Automotive OEMs and Suppliers - Leading OEMs (1) |
| 1.13. | Si IGBT Suppliers to Leading OEMs (1) |
| 1.14. | SiC Drives 800V Platforms |
| 1.15. | Ways to have 400V DC Charging Compatibility |
| 1.16. | 800V Charging Speeds |
| 1.17. | 800V Platforms SiC and Si IGBT Inverters |
| 1.18. | 800V Platforms SiC and Si IGBT Inverters (2) |
| 1.19. | Integration of Power Electronics |
| 1.20. | Integrated OBC with DC-DC converter |
| 1.21. | Traction Integrated Onboard Charger |
| 1.22. | Comparison of Single-Sided Cooling and Double-Sided Cooling |
| 1.23. | Inverter Market Share 2023-2036: GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 1.24. | Inverter Forecast 2023-2036 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 1.25. | OBC Forecast: Si, SiC, GaN 2023-2036 (GW) |
| 1.26. | DC-DC Converter Forecast: Si, SiC, GaN 2023-2036 (GW) |
| 1.27. | Inverter, OBC, DC-DC Converter Forecast 2023-2036 (GW) |
| 1.28. | Inverter, OBC, DC-DC Converter Forecast 2023-2036 (US$ billion) |
| 2. | ELECTRIC VEHICLE MARKETS: REGIONAL TRENDS AND FUTURE GROWTH |
| 2.1. | Electric Vehicle Definitions |
| 2.2. | Electric Vehicles: Typical Specs |
| 2.3. | Exponential Growth in Regional EV Markets |
| 2.4. | Regional Trends: US 2024 |
| 2.5. | Regional Trends: China 2024 |
| 2.6. | Regional Trends: Europe 2024 |
| 2.7. | Europe Regulations - Overview |
| 2.8. | EU Emissions and Targets |
| 2.9. | Hybrid Car Sales Peak |
| 2.10. | Powertrain Tailpipe Emissions Comparison |
| 2.11. | Cars - Total Cost of Ownership |
| 2.12. | Chip Shortages - 2020 to 2023 |
| 2.13. | Chip Shortages - Automaker Reactions |
| 2.14. | Chip Shortages - Electric Vehicles |
| 3. | OVERVIEW OF EV POWER ELECTRONICS AND WBG SEMICONDUCTORS |
| 3.1. | Introduction and Benchmarking Si, SiC and GaN |
| 3.1.1. | What is Power Electronics? |
| 3.1.2. | Power Electronics Use in Electric Vehicles |
| 3.1.3. | Transistor History & MOSFET Overview |
| 3.1.4. | Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages |
| 3.1.5. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors |
| 3.1.6. | Switching Losses: Si vs SiC vs GaN |
| 3.1.7. | Inverter, OBC, DC-DC converter |
| 3.1.8. | Advantages of SiC Material |
| 3.1.9. | Si IGBT and SiC MOSFET Price Comparison |
| 3.1.10. | SiC and GaN Device Cost Comparison |
| 3.1.11. | Limitations of SiC Power Devices |
| 3.1.12. | GaN's Potential to Reach High Voltage |
| 3.1.13. | Qromis Engineered Substrate for GaN Power: QST |
| 3.1.14. | SiC & GaN have Substantial Room for Improvement |
| 3.1.15. | GaN to Become Preferred OBC Technology |
| 3.1.16. | How GaN is implemented into an OBC |
| 3.1.17. | GaN Systems' Onboard Charger |
| 3.1.18. | Challenges for GaN Devices |
| 3.1.19. | SiC Power Roadmap |
| 3.1.20. | Applications Summary for WBG Devices |
| 3.2. | GaN Companies |
| 3.2.1. | Automotive GaN Device Suppliers are Growing |
| 3.2.2. | Progress of Different Applications of GaN |
| 3.2.3. | Which Substrate will Prevail for GaN? |
| 3.2.4. | Enhancement Mode vs Depletion Mode |
| 3.2.5. | GaN Systems |
| 3.2.6. | Texas Instruments and STMicroelectronics |
| 3.2.7. | Renesas (Transphorm) |
| 3.2.8. | VisIC Technologies |
| 3.2.9. | Efficient Power Conversion |
| 3.2.10. | Nexperia |
| 3.2.11. | GaN vs SiC potential in the Inverter |
| 3.2.12. | Ricardo: GaN in the Automotive Market |
| 3.2.13. | Innoscience |
| 3.2.14. | Power Integrations |
| 3.2.15. | Inovance Automotive: GaN |
| 3.2.16. | UAES CharCON HyperGaN |
| 3.2.17. | Cost and Volume Reductions of a GaN OBC |
| 3.2.18. | PCIM 2025: Onboard Charger Trends |
| 3.2.19. | Other GaN Companies: Qromis, QPT, BelGaN, Cambridge GaN Devices, Odyssey Semiconductor |
| 3.2.20. | NXP Inverter Predictions |
| 3.2.21. | Single Stage OBCs |
| 3.2.22. | Current Landscape for OBCs |
| 3.2.23. | GaN in OBCs: Ahead of Forecasts |
| 3.2.24. | Current Inverter Landscape |
| 3.2.25. | Shanghai Electric Drive: GaN Inverter |
| 3.3. | Inverter, OBC, Converter Design & Si, SiC, GaN Outlook |
| 3.3.1. | Inverter, OBC, Converter Design & Si, SiC, GaN Outlook |
| 3.3.2. | Inverter Overview |
| 3.3.3. | Pulse Width Modulation |
| 3.3.4. | Traditional EV Inverter |
| 3.3.5. | Discretes & Modules |
| 3.3.6. | Inverter Printed Circuit Boards |
| 3.3.7. | Inverter Components and Cost |
| 3.3.8. | Electric Vehicle Inverter Benchmarking |
| 3.3.9. | Electric Vehicle Inverter Benchmarking 2 |
| 3.3.10. | SiC Impact on the Inverter Package |
| 3.3.11. | IDTechEx Inverter Benchmarking |
| 3.3.12. | Inverter Forecast 2023-2036 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 3.3.13. | OBC Forecast: Si, SiC, GaN 2023-2036 (GW) |
| 3.3.14. | DC-DC Converter Forecast: Si, SiC, GaN 2023-2036 (GW) |
| 3.3.15. | Onboard Charger Circuit Components |
| 3.3.16. | Tesla Onboard Charger / DC-DC Converter |
| 3.3.17. | OBC by Level: 4kW, 6-11.5kW, 16-22kW 2020-2036 |
| 4. | WIDE BANDGAP SEMICONDUCTOR MANUFACTURING CHAIN |
| 4.1. | SiC Manufacturing |
| 4.1.1. | Introduction |
| 4.1.2. | Si IGBT Production: Raw Material to EV |
| 4.1.3. | SiC MOSFET Production: Raw Material to EV |
| 4.1.4. | SiC-Specific Equipment |
| 4.1.5. | From 150mm to 200mm: Potential Cost Advantages |
| 4.1.6. | 200mm Wafer Die Count Advantage |
| 4.1.7. | 200mm SiC Wafer Production Worldwide |
| 4.1.8. | 2025: The Transition to 8-inch SiC Wafers Continue |
| 4.1.9. | Vertical Integration: Acquisitions and Collaborations |
| 4.1.10. | Denso: Research and Development for Faster SiC Crystal Growth |
| 4.1.11. | Siltectra: Cold Split Technology |
| 4.1.12. | SmartSiC Technology from SOITEC |
| 4.1.13. | Summary of SmartSiC Advantages |
| 4.1.14. | Sumitomo Metal Mining: SiCkrest |
| 4.1.15. | Sumitomo Metal Mining: SiCkrest (2) |
| 4.2. | GaN Manufacturing |
| 4.2.1. | Which Substrate will Prevail for GaN? |
| 4.2.2. | TSMC To Exit GaN Foundry Business |
| 4.2.3. | GaN vs Si: Die to Vehicle Level |
| 4.2.4. | Energy Demand of Processes: Si vs GaN |
| 5. | TRENDS IMPACTING POWER ELECTRONICS |
| 5.1. | Introduction |
| 5.1.1. | Improving The Efficiency of Power Electronics |
| 5.1.2. | Efficiency and Thermal gains, 800V |
| 5.1.3. | Examples of SiC in the automotive industry |
| 5.2. | SiC and 800V |
| 5.2.1. | SiC Drives 800V Platforms |
| 5.2.2. | 800V Charging Speeds |
| 5.2.3. | GMC Hummer: 800V charging without 800V architecture |
| 5.2.4. | Other Split Battery Pack Vehicles: Tesla, Porsche, Ford |
| 5.2.5. | Tesla Cybertruck: Split Battery with 800V Architecture |
| 5.2.6. | Porsche Taycan: Boost Converter |
| 5.2.7. | Preh - Charging Technology for 800V EVs |
| 5.2.8. | 400V SiC Platforms |
| 5.2.9. | 800V Platforms SiC and Si IGBT Inverters |
| 5.2.10. | 800V Platforms SiC and Si IGBT Inverters (2) |
| 5.2.11. | 800V Adoption 2023 |
| 5.2.12. | 800V Adoption 2024-2025 |
| 5.2.13. | 800V Model Announcements in China (2022-2025) |
| 5.2.14. | 800V For & Against |
| 5.2.15. | DCFC Impact on Li-ion Cells |
| 5.2.16. | Fast Charge Cell Design Hierarchy - Levers to Pull |
| 5.2.17. | DC Fast Charging levels |
| 5.2.18. | 800V Platform Discussion & Outlook |
| 5.2.19. | Hybrid Switch Inverters |
| 5.2.20. | Hybrid Switch Inverters |
| 5.2.21. | 3-Level Inverters to Unlock GaN |
| 5.3. | Integration of Power Electronics |
| 5.3.1. | Different Levels of Integration |
| 5.3.2. | Owning the Supply Chain is Key |
| 5.3.3. | Vitesco and Renault: High Voltage Box and One Box |
| 5.3.4. | Integrated OBC with DC-DC converter |
| 5.3.5. | Preh Combo Units |
| 5.3.6. | Renault Zoe: 43kW AC Charging |
| 5.3.7. | Traction Integrated Onboard charger |
| 5.3.8. | Traction iOBC suppliers |
| 5.3.9. | Hyundai E-GMP: 800V, SiC and power electronics integration |
| 5.3.10. | BorgWarner: Combined Inverter and DC-DC Converter |
| 5.3.11. | NXP Inverter Predictions |
| 5.4. | Mixing Si IGBTs and SiC MOSFETs |
| 5.4.1. | SiC Impact on the Inverter Cost |
| 5.4.2. | SiC MOSFET vs Si IGBT: Overall Vehicle Cost |
| 5.4.3. | Si IGBT and SiC MOSFET Price Comparison |
| 5.4.4. | SiC Diodes: Onboard Charger |
| 5.4.5. | SiC Diodes: Inverter |
| 5.4.6. | Other Hybrid SiC Suppliers |
| 5.4.7. | NXP Inverter Predictions |
| 5.5. | Other Trends |
| 5.5.1. | Trends in Power Electronics: Dual Inverters |
| 5.5.2. | Thermal Management of the Dual Inverter and Power Modules |
| 5.5.3. | The Battery as Power Electronics |
| 5.5.4. | Porsche |
| 6. | SUPPLY CHAIN FOR POWER SEMICONDUCTOR MATERIALS, DEVICES & OEMS |
| 6.1. | SiC MOSFET and Si IGBT Suppliers |
| 6.1.1. | Supply Developments: Infineon |
| 6.1.2. | Supply Developments: STMicroelectronics |
| 6.1.3. | Supply Developments: Wolfspeed |
| 6.1.4. | Supply Developments: ROHM |
| 6.1.5. | Supply Developments: Onsemi |
| 6.1.6. | SiC MOSFET by Automotive OEMs and Suppliers - Leading OEMs (1) |
| 6.1.7. | SiC MOSFET by Automotive OEMs and Suppliers - Emerging OEMs |
| 6.1.8. | Si IGBT Suppliers to Leading OEMs |
| 6.1.9. | Si IGBT Suppliers to Emerging OEMs |
| 6.1.10. | New SiC Fabrication Centres |
| 6.2. | Device Suppliers |
| 6.2.1. | Infineon CoolSiC Efficiency Gains |
| 6.2.2. | Infineon Establishing Major OEM Partnerships |
| 6.2.3. | Infineon Design Wins |
| 6.2.4. | ROHM Semiconductor Expands SiC Production Capacity |
| 6.2.5. | ROHM: SiC Partnerships with OEMs and Tier Ones |
| 6.2.6. | STMicroelectronics Releases ACEPACK in Race for Market Leadership |
| 6.2.7. | STMicro Portfolio for EV Power Electronics |
| 6.2.8. | Wolfspeed: Major Investment & OEM Partnerships for SiC |
| 6.2.9. | Onsemi EliteSiC |
| 6.2.10. | Navitas GeneSiC |
| 6.2.11. | Benchmarking GeneSiC and its Trench Assisted Planar Configurations |
| 6.2.12. | Qorvo |
| 6.2.13. | Qorvo SiC FET vs SiC MOSFET |
| 6.2.14. | Trench vs Planar |
| 6.3. | Tier-1 Suppliers |
| 6.3.1. | Delphi Technologies Supply Luxury Automakers with Viper SiC Module |
| 6.3.2. | BorgWarner |
| 6.3.3. | BorgWarner Integrated Drive Module for Ford |
| 6.3.4. | BorgWarner Design Wins |
| 6.3.5. | Dana |
| 6.3.6. | Vitesco |
| 6.3.7. | Vitesco Power Electronics Products |
| 6.3.8. | Vitesco Schaeffler Merger |
| 6.3.9. | Equipmake |
| 6.3.10. | LG-Magna |
| 6.3.11. | Hitachi Double Sided IGBTs to Major OEM |
| 6.3.12. | Continental / Jaguar Land Rover |
| 6.3.13. | Helix CTI-4: Lotus Evija |
| 6.3.14. | Motion Applied (Formerly McLaren Applied) IPG5-x |
| 6.4. | Automotive OEMs |
| 6.4.1. | Hyundai Diversifies SiC Supply for Best-Selling 800V E-GMP Platform |
| 6.4.2. | GM From Bolt & Volt to Ultium |
| 6.4.3. | Volvo Heavy Duty SiC Inverter |
| 6.4.4. | Mercedes In House Development |
| 7. | POWER ELECTRONICS PACKAGES: EV USE-CASES |
| 7.1. | Toyota Prius 2004-2010 |
| 7.2. | 2008 Lexus |
| 7.3. | Honda Accord 2014 |
| 7.4. | Toyota Prius 2010-2015 |
| 7.5. | Nissan Leaf 2012 |
| 7.6. | Honda Fit (by Mitsubishi) |
| 7.7. | Toyota Prius 2016 Onwards |
| 7.8. | Cadillac 2016 (by Hitachi) |
| 7.9. | Chevrolet Volt 2016 (by Delphi) |
| 7.10. | BMW i3 (by Infineon) |
| 7.11. | JAC iEV4 |
| 7.12. | Chinese NEV Uses Infineon |
| 7.13. | Huachen Xinri |
| 7.14. | Tesla Model X: Infineon IGBTs before SiC |
| 7.15. | 800V Si IGBT IGBT Choices |
| 7.16. | Porsche Taycan |
| 7.17. | Nissan Ariya 2021 |
| 7.18. | Jaguar I-PACE |
| 7.19. | Jaguar I-PACE Power Module and Cooling |
| 7.20. | Wuling Hongguang Mini EV |
| 7.21. | Danfoss |
| 7.22. | Rivian R1T |
| 7.23. | Lexus RZ |
| 7.24. | Ford F-150 Lightning |
| 7.25. | BYD Atto 3 (2022): 8-in-1 Powertrain |
| 7.26. | BMW iX3 |
| 7.27. | Tesla Cybertruck |
| 7.28. | STMicro |
| 8. | THERMAL MANAGEMENT FOR EV POWER ELECTRONICS |
| 8.1. | Introduction |
| 8.1.1. | Thermal Management Strategies in Power Electronics (1) |
| 8.1.2. | Thermal Management Strategies in Power Electronics (2) |
| 8.1.3. | Transistor History & MOSFET Overview - How Does it Affect Thermal Management |
| 8.1.4. | Summary of Cooling Approaches - (1) |
| 8.1.5. | Summary of Cooling Approaches - (2) |
| 8.2. | TIM1 and TIM2 in power electrics |
| 8.2.1. | Where are TIMs used in EV Power Electronics |
| 8.2.2. | TIM1 in Flip Chip Packaging |
| 8.2.3. | Solders as TIM1 |
| 8.2.4. | Solder Options and Current Die Attach |
| 8.2.5. | Die-Attach Solution - Thermal Conductivity Comparison |
| 8.2.6. | Trend Towards Sintering |
| 8.2.7. | Silver Sintering Paste |
| 8.2.8. | Suppliers of metal sintering pastes |
| 8.2.9. | Properties and performance of solder alloys and sintered pastes |
| 8.2.10. | TIM2 - IDTechEx's Analysis on Promising TIM2 |
| 8.2.11. | Yearly Market Size of TIMs Forecast (US$ Millions): 2024-2034 |
| 8.3. | Liquid cooling - single and double sided |
| 8.3.1. | Single side, dual side, in-direct, and direct cooling |
| 8.3.2. | Key Summary of Single-Sided Cooling |
| 8.3.3. | Benefits and Drawbacks of Single-Sided Cooling |
| 8.3.4. | TIM2 Area Largely Similar for Single-Sided Cooling |
| 8.3.5. | onsemi - EliteSiC Power Module |
| 8.3.6. | ST Microelectronics - Tesla Model 3 |
| 8.3.7. | Key Summary of Double-Sided Cooling (DSC) |
| 8.3.8. | Double-Sided Cooling Introduction |
| 8.3.9. | Double-Sided cooling examples |
| 8.3.10. | The Need for Double-Sided Cooling in Power Modules |
| 8.3.11. | Infineon's HybridPACK DSC |
| 8.3.12. | Inner Structure of HybridPACK DSC |
| 8.3.13. | onsemi - VE-Trac Family modules |
| 8.3.14. | CRRC |
| 8.3.15. | Hitachi Inverter - Double-Sided Cooling |
| 8.3.16. | BYD 1500V SiC - Double-Sided Ag Sintering |
| 8.3.17. | Trend Towards Double-Sided Cooling for Automotive Applications |
| 8.3.18. | Transition to Double-Sided Liquid Cooling |
| 8.3.19. | Market Share of Single and Double-Sided Cooling: 2024-2034 |
| 9. | POWER ELECTRONICS FOR HEAVY DUTY VEHICLES |
| 9.1.1. | Trucks are Capital Goods |
| 9.1.2. | Differences Between Power Electronics for Passenger Vehicles and Heavy-Duty Vehicles |
| 9.1.3. | Torque vs Peak Power for Heavy-Duty BEVs |
| 9.1.4. | PowerizeD |
| 9.1.5. | High Voltage Powertrains for Heavy Duty Trucks |
| 9.1.6. | Ways to have 400V DC Charging Compatibility |
| 9.1.7. | MCS Specifications and Comparison |
| 9.1.8. | 800V Makes More Sense for Heavy Duty Trucks |
| 9.1.9. | Power Conversion for Low Power Applications |
| 9.1.10. | Onboard Chargers for Electric Trucks |
| 9.1.11. | Inverters for Heavy-Duty Vehicles |
| 9.2. | Heavy-Duty BEV Suppliers |
| 9.2.1. | Hitachi Roadpak |
| 9.2.2. | BAE Systems |
| 9.2.3. | BAE and Eaton Commercial Demonstrator 2024 |
| 9.2.4. | Accelera by Cummins |
| 9.2.5. | Accelera (Cummins) |
| 10. | FORECASTS |
| 10.1. | Exponential Growth in Regional EV Markets |
| 10.2. | Methodology |
| 10.3. | Inverters per Car Forecast 2022-2036 |
| 10.4. | Inverters per Car: Regional |
| 10.5. | Multiple Motors / Inverters per Vehicle |
| 10.6. | Inverter Forecast 2023-2036 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 10.7. | Inverter Market Share 2023-2036: GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 10.8. | Inverter Liquid Cooling Strategy Forecast (units): 2015-2036 |
| 10.9. | Discretes vs Power Modules Forecast for Inverters 2023-2036 |
| 10.10. | OBC Forecast: Si, SiC, GaN 2023-2036 (GW) |
| 10.11. | DC-DC Converter Forecast: Si, SiC, GaN 2023-2036 (GW) |
| 10.12. | Inverter, OBC, DC-DC Converter Forecast 2023-2036 (GW) |
| 10.13. | Inverter, OBC, DC-DC Converter Unit Sales Forecast 2023-2036 |
| 10.14. | Inverter, OBC, DC-DC Converter Forecast 2023-2036 (US$ billion) |
| 10.15. | OBC by Level: 4kW, 6-11.5kW, 16-22kW 2020-2036 |
| 10.16. | Inverter, OBC & Converter, Si, SiC, GaN Cost Assumptions (US$ per kW) |
| 11. | PROFILES |
| 11.1. | Advanced Electric Machines Ltd |
| 11.2. | Arteco: EV-Specific Water-Glycol Coolants |
| 11.3. | BMW |
| 11.4. | BYD Auto |
| 11.5. | Diamond Foundry: Electric Vehicle Inverters |
| 11.6. | Dynex Semiconductor (CRRC): EV Power Electronics |
| 11.7. | Efficient Power Conversion: GaN FETs |
| 11.8. | Efficient Power Conversion: GaN in Automotive |
| 11.9. | Elaphe: In-wheel Motors to Increase Drive Cycle Efficiency |
| 11.10. | Equipmake: Electric Motors and Power Electronics |
| 11.11. | GaN Systems |
| 11.12. | General Motors (2020) |
| 11.13. | Heraeus: Solutions for EV Power Electronics |
| 11.14. | Hyundai: E-GMP 800V Platform Success |
| 11.15. | Infineon: 750V SiC MOSFETs for Onboard Chargers |
| 11.16. | Infineon: Automotive Power Electronics |
| 11.17. | Infineon: Expanding SiC OEM Partnerships |
| 11.18. | Integral e-Drive |
| 11.19. | Lotus |
| 11.20. | Lucid Motors |
| 11.21. | Magna International |
| 11.22. | McLaren Automotive |
| 11.23. | Nexperia: GaN for EV Power Electronics |
| 11.24. | NXP Semiconductors |
| 11.25. | QPT: MHz Switching, Active Cooling GaN |
| 11.26. | Rivian: Electric Passenger Trucks |
| 11.27. | ROHM Semiconductor: Supplying Lucid Motors |
| 11.28. | STMicroelectronics: SiC Advantages and Supply Chain |
| 11.29. | Tesla (2019 Update) |
| 11.30. | Transphorm |
| 11.31. | Valeo (48V Powertrain) |
| 11.32. | Wolfspeed |
| 11.33. | Wolfspeed: Major SiC Supply Deals |