| 1. | EXECUTIVE SUMMARY |
| 1.1. | Historic Data of TDP - GPU |
| 1.2. | TDP Trend: Historic Data and Forecast Data - CPU |
| 1.3. | Cooling Methods Overview |
| 1.4. | Different Cooling on Chip Level |
| 1.5. | Yearly Revenue Forecast By Cooling Method: 2022-2035 |
| 1.6. | Summary of Yearly Revenue Forecast for Liquid Cooling: 2022-2035 |
| 1.7. | Immersion Cooling Revenue Forecast: 2022 - 2035 |
| 1.8. | Cooling Technology Comparison |
| 1.9. | Air Cooling |
| 1.10. | Liquid Cooling - Direct-to-Chip/Cold Plate and Immersion |
| 1.11. | Liquid Cooling - Single-Phase and Two-Phase |
| 1.12. | Yearly Cold Plate Number Forecast: 2022 - 2035 |
| 1.13. | Immersion Tank Yearly Number Forecast: 2022 - 2035 |
| 1.14. | Coolant Comparison |
| 1.15. | Coolant Comparison - PFAS Regulations |
| 1.16. | Coolant Distribution Units (CDU) |
| 1.17. | Heat Transfer - Thermal Interface Materials (TIMs) (1) |
| 1.18. | Heat Transfer - Thermal Interface Materials (TIMs) (2) |
| 1.19. | Yearly TIM Area Forecast by Data Center Component: 2021-2035 |
| 1.20. | Cooling cost analysis |
| 1.21. | OPEX and TCO Estimation |
| 1.22. | Pricing of Direct-to-Chip, Immersion and Air Cooling - US$/Watt |
| 2. | INTRODUCTION |
| 2.1. | Overview |
| 2.1.1. | Data Center Demographics |
| 2.1.2. | Data Center Equipment - Top Level Overview |
| 2.1.3. | Data Center Server Rack and Server Structure |
| 2.1.4. | Power Use Effectiveness |
| 2.1.5. | Data Center Switch Topology - Three Layer and Spine-Leaf Architecture |
| 2.1.6. | K-ary Fat Tree Topology |
| 2.2. | Data Center Thermal Management Overview |
| 2.2.1. | Thermal Management Needs for Data Centers |
| 2.2.2. | Significant Consequences for Data Center Downtime |
| 2.2.3. | Data Center Location Choice |
| 2.2.4. | Increasing TDP Drives More Efficient Thermal Management |
| 2.2.5. | Overview of Thermal Management Methods for Data Centers |
| 2.2.6. | Thermal Management Categorization |
| 2.3. | Thermal Design Power (TDP) Evolution |
| 2.3.1. | Historic Data of TDP - GPU |
| 2.3.2. | TDP Trend: Historic Data and Forecast Data - CPU |
| 3. | THERMAL MANAGEMENT METHODS |
| 3.1. | Introduction to Data Center Cooling Classification |
| 3.2. | Cooling Technology Comparison (1) |
| 3.3. | Cooling Technology Comparison (2) |
| 3.4. | Air Cooling |
| 3.5. | Hybrid Liquid-to-Air Cooling |
| 3.6. | Hybrid Liquid-to-Liquid Cooling |
| 3.7. | Hybrid Liquid-to-Refrigerant Cooling |
| 3.8. | Hybrid Refrigerant-to-Refrigerant Cooling |
| 3.9. | Server Board Number Forecast: 2025 - 2035 |
| 4. | AIR COOLING |
| 4.1. | Overview |
| 4.1.1. | Introduction to Air Cooling (1) |
| 4.1.2. | Introduction to Air Cooling (2) |
| 4.1.3. | Benefits and Drawbacks of Air-Cooling Methods |
| 4.1.4. | Use Case: Row-Level Cooling Liebert® CRV CRD25 |
| 4.1.5. | Overview: RDHx |
| 4.1.6. | Hybrid Air-to-Liquid Cooling - nVent |
| 4.1.7. | Cooling Tower - Adiabatic Cooling |
| 4.1.8. | Balance Between Water Use and Power Use - Case by Case in Practice |
| 4.1.9. | Use Case: Jaeggi - Adiabatic and Hybrid Dry Coolers |
| 4.1.10. | Trend for Air Cooling in Data Centers |
| 4.2. | Air Cooling Forecasts |
| 4.2.1. | Percentage of Air-Cooled Racks |
| 4.2.2. | TCO Comparison |
| 4.2.3. | Yearly Data Center Air Cooling Revenue Forecast: 2016-2033 |
| 5. | LIQUID COOLING OVERVIEW |
| 5.1. | Liquid Cooling and Immersion Cooling |
| 5.2. | Comparison of Liquid Cooling Technologies (1) |
| 5.3. | Comparison of Liquid Cooling Technologies (2) |
| 5.4. | Liquid Cooling - Power Limitation of Different Cooling on Rack Level |
| 5.5. | Different Cooling on Chip Level |
| 5.6. | Data Center By Power |
| 5.7. | Liquid-Cooled Data Center Server Rack by Power |
| 6. | COLD PLATES |
| 6.1. | Overview |
| 6.1.1. | Cold Plate/Direct to Chip Cooling - Standalone Cold Plate |
| 6.1.2. | Liquid Cooling Cold Plates |
| 6.1.3. | Cold Plate/Direct to Chip Cooling in Server Boards |
| 6.1.4. | Benefits and Drawbacks of Cold Plate Cooling |
| 6.1.5. | Cold Plate Requirements |
| 6.1.6. | Considerations for Cold Plate Design (1) |
| 6.1.7. | Considerations for Cold Plate Design (2) |
| 6.1.8. | Thermal Cost Analysis of Cold Plate System - (1) |
| 6.1.9. | Thermal Cost Analysis of Cold Plate System - (2) |
| 6.1.10. | Liquid Cooling Technology Definitions (1) |
| 6.1.11. | Liquid Cooling Technology Definitions (2) |
| 6.2. | Single-Phase Cold Plate |
| 6.2.1. | Single-Phase Cold Plate |
| 6.2.2. | Single-Phase Cold Plate Considerations |
| 6.2.3. | IEI Integration Corp |
| 6.2.4. | Why Single-Phase Cold Plate Might Dominate |
| 6.3. | Two-Phase Cold Plate |
| 6.3.1. | Wieland Group - Two-Phase Evaporator/Cold Plate |
| 6.3.2. | Passive Cold Plate Cooling - Frigel & Neurok Thermocon |
| 6.3.3. | Examples: Direct-to-Chip Cooling |
| 6.3.4. | Tyson - Passive Two-Phase Cooling |
| 6.3.5. | Passive Loop Heat Pipes (LHP) |
| 6.3.6. | Use Case: Calyos |
| 6.3.7. | Direct Water-Cooled Server - ABB |
| 6.4. | Cold Plate Forecast |
| 6.4.1. | Yearly Number of Cold Plate for AI and Non-AI Forecast: 2022 - 2035 |
| 6.4.2. | Yearly Number of Single- and Two-Phase Cold Plates: 2022 - 2035 |
| 6.4.3. | Market Share Forecast of Single- and Two-Phase Cold Plate: 2022 - 2035 |
| 6.4.4. | Yearly Number of Cold Plate For Non-AI Forecast: 2025 - 2035 |
| 6.4.5. | Total Cost Analysis of Cold Plate (Cold plate + QD + Manifold, Hoses, etc.) |
| 6.4.6. | GPU and CPU Cold Plate System Forecast: 2025-2035 |
| 6.4.7. | Cost of Cold Plate System Forecast: 2022 - 2035 |
| 6.4.8. | Yearly Revenue Forecast Summary of Cold Plate: 2022 - 2035 |
| 6.4.9. | Yearly Cold Plate Revenue Forecast: 2022 - 2035 |
| 6.4.10. | Yearly Revenue of Cold Plate of CPU and GPU: 2025-2035 |
| 6.5. | Summary of Cold Plate Cooling |
| 6.5.1. | Overview: Cold Plate |
| 6.5.2. | Cold Plate Structure |
| 6.5.3. | Benefits and Challenges of Cold Plate Cooling (1) |
| 6.5.4. | Benefits and Challenges of Cold Plate Cooling (2) |
| 6.5.5. | Limitations of Cold Plate Cooling |
| 6.5.6. | SWOT of Cold Plate/Direct-to-Chip Cooling |
| 6.5.7. | Summary of Cold Plate Cooling - Considerations |
| 6.5.8. | Thermal Cost Analysis of Cold Plate System - (1) |
| 6.5.9. | Thermal Cost Analysis of Cold Plate System - (2) |
| 7. | SPRAY COOLING |
| 7.1. | Introduction to Spray Cooling |
| 7.2. | Advanced Liquid Cooling Technologies (ALCT) - Spray Cooling |
| 8. | IMMERSION COOLING |
| 8.1. | Overview |
| 8.1.1. | Single-Phase and Two-Phase Immersion - Overview (1) |
| 8.1.2. | Single-Phase Immersion Cooling (2) |
| 8.1.3. | SWOT: Single-Phase Immersion Cooling |
| 8.1.4. | Overview: Two-Phase Immersion Cooling |
| 8.1.5. | SWOT: Two-Phase Immersion Cooling |
| 8.2. | Single-Phase |
| 8.2.1. | Use Case: Iceotope - Direct-to-Chip + Immersion |
| 8.2.2. | Use Case: LiquidCool Solutions - (1) |
| 8.2.3. | Use Case: LiquidCool Solutions - (2) |
| 8.2.4. | Use Case: Green Revolution Cooling (GRC) |
| 8.2.5. | nVent/Iceotope and LiquidCool Solutions - Limited Differentiation |
| 8.2.6. | DCX Liquid Cooling - Immersion |
| 8.3. | Two-Phase |
| 8.3.1. | Wieland - Two-Phase Immersion Cooling |
| 8.3.2. | Two-Phase Cooling - Phase Out Before Starting to Take Off? |
| 8.3.3. | Roadmap of Two-Phase Immersion Cooling |
| 8.3.4. | Roadmap of Single-Phase Immersion Cooling |
| 8.3.5. | Examples: Immersion |
| 8.3.6. | Use-Case: Iceotope and Meta |
| 8.3.7. | Use-Case: Microsoft |
| 8.3.8. | Use-Case: Microsoft Halted its Underwater Data Centers |
| 8.3.9. | Asperitas |
| 8.3.10. | Gigabyte |
| 8.3.11. | Summary (1) - Benefits of Immersion Cooling |
| 8.3.12. | Summary (2) - Challenges of Immersion Cooling |
| 8.3.13. | Cost Saving Comparison - Immersion and Air Cooling |
| 8.3.14. | Comparison of Liquid Cooling Methods |
| 8.3.15. | Pricing of Direct-to-Chip, Immersion and Air Cooling - US$/Watt |
| 8.3.16. | Immersion Tank Yearly Number Forecast: 2022 - 2035 |
| 8.3.17. | Immersion Cooling Revenue Forecast: 2022 - 2035 |
| 9. | COOLANT |
| 9.1. | Introduction to Cooling Fluid |
| 9.2. | Coolant Fluid Comparison - Operating Temperature |
| 9.3. | Trend - Decline in Fluorinated Chemicals? |
| 9.4. | Immersion Coolant Liquid Suppliers |
| 9.5. | Engineered Fluids - Why Better Than Oils |
| 9.6. | What is the Roadmap for Coolant in Two-Phase Cooling? |
| 9.7. | Honeywell R-1233zd and Chemours' Opteon SF33 |
| 9.8. | Demand for Immersion Coolant Standardization - FOMs |
| 9.9. | Figures of Merit (FOM) |
| 9.10. | Force Convection FOM for Single-Phase Immersion |
| 9.11. | FOM3 - Viscosity for Pressure Drop |
| 9.12. | Density |
| 9.13. | Signal Integrity Evaluations |
| 9.14. | Global Warming Potential (GWP) |
| 9.15. | Material Compatibility Guide - Coolant and TIMs/Adhesives |
| 9.16. | Material Compatibility Guide - Seals/Gaskets/O-Rings and Coolant |
| 9.17. | Material Compatibility Guide - Plastics and Coolant |
| 9.18. | Material Compatibility Guide - Pipe & Fitting and Coolant |
| 9.19. | Material Compatibility Guide - Metal and Coolant |
| 9.20. | Yearly Coolant Volume for Immersion: 2022-2035 |
| 10. | PARTNERSHIPS |
| 10.1. | Data Center Cooling Value Chain |
| 10.2. | Cooling Solution Partner |
| 10.3. | Intel and Submer - Heat Reuse and Immersion Cooling |
| 10.4. | Iceotope, Intel and HPE |
| 10.5. | Iceotope, Schneider Electric, and Avnet - Liquid Cooled Data Center |
| 10.6. | GRC and Intel |
| 10.7. | GRC and Dell - Edge Deployment |
| 10.8. | Iceotope and Meta |
| 10.9. | Development of New Immersion Coolant - ElectroSafe |
| 10.10. | Partnership - how does the value chain look like? |
| 10.11. | Roadmap of Liquid Cooling Adoption |
| 10.12. | Data Center Cooling Solution - Roadmap |
| 11. | TOTAL COST OF OWNERSHIP ANALYSIS |
| 11.1. | Cooling cost analysis |
| 11.2. | OPEX and TCO Estimation |
| 11.3. | TCO Comparison - Payback Time |
| 11.4. | Pricing of Direct-to-Chip, Immersion and Air Cooling - US$/Watt |
| 11.5. | TCO Analysis of D2C with Chiller |
| 11.6. | TCO Analysis of 1-PIC with Chiller |
| 11.7. | TCO Analysis - 10 Year |
| 11.8. | Cooling System Cost - Direct to Chip Cooling Hardware |
| 11.9. | Immersion Cooling Cost - Componentry and Facility Level |
| 11.10. | Cooling System Cost - CDUs Hardware |
| 11.11. | Cost - Fluids |
| 11.12. | Cooling System Cost - Thermal Interface Materials |
| 12. | COOLANT DISTRIBUTION UNITS (CDUS) |
| 12.1. | Overview |
| 12.1.1. | Overview - (1) |
| 12.1.2. | Overview - (2) |
| 12.1.3. | Redundancy - (1) |
| 12.1.4. | Redundancy - (2) |
| 12.1.5. | Liquid-to-Liquid (also known as L2L) CDUs |
| 12.1.6. | Liquid-to-Air CDUs |
| 12.1.7. | Summary of Liquid-to-Liquid and Liquid-to-Air Cooling |
| 12.1.8. | Vertiv - Liebert® XDU 60 Heat Exchanger and CDU - (1) |
| 12.1.9. | Vertiv - Liebert® XDU Heat Exchanger and CDU - (2) |
| 12.1.10. | CDU - nVent |
| 12.1.11. | CDU - CoolIT - Teardown (1) |
| 12.1.12. | CDU - CoolIT - Teardown (2) |
| 12.1.13. | CDU - CoolIT - Teardown (3) |
| 12.1.14. | CDU Teardown - Motivair |
| 12.1.15. | CDU - Cooling Capacity Evaluation |
| 12.1.16. | Revenue Forecast of CDU: 2022 - 2035 |
| 12.2. | Main Pump |
| 12.2.1. | Overview |
| 12.2.2. | Redundancy Analysis |
| 12.3. | Filtering |
| 12.3.1. | Overview |
| 12.3.2. | Filters - Schematic Drawing |
| 12.3.3. | Filters |
| 12.4. | Sensors |
| 12.4.1. | Overview of Sensors |
| 12.4.2. | Leakage Detection Sensors - Overview |
| 12.4.3. | Leakage Detection Sensors on Server Nodes (1) |
| 12.4.4. | Leakage Detection Sensors on Server Nodes (2) |
| 12.5. | Heat Reuse |
| 12.5.1. | Overview of the Heat Reuse in Data Center Cooling |
| 12.5.2. | Use Case: Amazon Data Center Heat Reuse |
| 12.5.3. | Facebook (Now Meta) Data Center Heat Reuse |
| 12.5.4. | Tencent - Tianjin Data Center Heat For Municipal Heating |
| 12.5.5. | Return on Investment of Heat Reuse |
| 12.5.6. | More Examples of Heat Reuse |
| 13. | HEAT TRANSFER - THERMAL INTERFACE MATERIALS (TIMS) |
| 13.1. | Thermal Interface Materials in Data Centers |
| 13.2. | Common Types of TIMs in Data Centers - Line Card Level |
| 13.3. | TIMs in Data Centers - Line Card Level - Transceivers |
| 13.4. | TIMs in Server Boards |
| 13.5. | Server Board Layout |
| 13.6. | TIMs for Data Center - Server Boards, Switches and Routers |
| 13.7. | Data Center Switch Players |
| 13.8. | How TIMs are Used in Data Center Switches - FS N8560-32C 32x 100GbE Switch |
| 13.9. | WS-SUP720 Supervisor 720 Module |
| 13.10. | Ubiquiti UniFi USW-Leaf Switch |
| 13.11. | FS S5850-48S6Q 48x 10GbE and 6x 40GbE Switch |
| 13.12. | Cisco Nexus 7700 Supervisor 2E module |
| 13.13. | TIMs for Power Supply Converters (1): AC-DC and DC-DC |
| 13.14. | Data Center Power Supply System |
| 13.15. | TIMs for Data Center Power Supplies (2) |
| 13.16. | TIMs for Data Center Power Supplies (3) |
| 13.17. | TIMs in Data Center Power Supplies (4) |
| 13.18. | How TIMs are Used in Data Center Power Supplies (5) |
| 13.19. | How TIMs are Used in data center power supply (6) |
| 13.20. | TIMs for Data Centers - Power Supply Converters |
| 13.21. | Differences Between TIM Forms - (1) |
| 13.22. | Differences Between TIM Forms - (2) |
| 13.23. | Novel material - Laminar Metal Form with High Softness (1) |
| 13.24. | Novel material - Laminar Metal Form with High Softness (2) |
| 13.25. | TIM Trends in Data Centers |
| 13.26. | Estimating the TIM Areas in Server Boards |
| 13.27. | Servers Number Forecast: 2021-2035 |
| 13.28. | TIM Requirement in Immersion Cooling |
| 13.29. | Common TIMs for Immersion Cooling |
| 13.30. | Total TIM Area in Server Boards Forecast (m2): 2022-2035 |
| 13.31. | Area of TIM per Switch |
| 13.32. | TIM Area for Leaf and Spine Switch |
| 13.33. | Yearly TIM Area for Leaf and Spine Switch Forecast: 2025-2035 |
| 13.34. | TIM Consumption in Data Center Power Supplies |
| 13.35. | Yearly TIM Area for Power Supply Forecast (m2): 2025-2035 |
| 13.36. | Forecast summary - Yearly TIM Area (m2) Forecast for Different Data Center Components: 2025-2035 |
| 14. | FORECAST SUMMARY |
| 14.1. | Yearly Revenue Forecast By Cooling Method: 2022-2035 |
| 14.2. | Summary of Yearly Revenue Forecast for Liquid Cooling: 2022-2035 |
| 14.3. | Summary of Yearly Volume Forecast for Liquid Cooling: 2022-2035 |
| 14.4. | Yearly Revenue Forecast Summary of Cold Plate: 2022 - 2035 |
| 15. | COMPANY PROFILES |
| 15.1. | Accelsius — Two-Phase Direct-to-Chip Cooling |
| 15.2. | Amazon AWS Data Center |
| 15.3. | Arieca (2024) |
| 15.4. | Arieca (2020) |
| 15.5. | Asperitas Immersed Computing |
| 15.6. | Calyos: Data Center Applications |
| 15.7. | Engineered Fluids |
| 15.8. | Green Revolution Cooling (GRC) |
| 15.9. | Henkel: microTIM and data centers |
| 15.10. | LiquidCool Solutions — Chassis-Based Immersion Cooling |
| 15.11. | LiSAT |
| 15.12. | Nano-Join |
| 15.13. | NeoFan |
| 15.14. | Neurok Thermocon Inc |
| 15.15. | Parker Lord: Dispensable Gap Fillers |
| 15.16. | Resonac Holdings |
| 15.17. | Sumitomo Chemical Co., Ltd |
| 15.18. | Taybo (Shanghai) Environmental Technology Co., Ltd |
| 15.19. | Tyson |
| 15.20. | Vertiv Holdings - Data Center Liquid Cooling |
| 15.21. | ZutaCore |