創薬における AI 2021年: 有力企業、技術および用途

バーチャルスクリーニング、デノボ化合物医薬品設計、リード最適化および化学物合成計画における人工知能(機械学習およびディープラーニング)

製品情報 概要 目次 FAQ (よくある質問) 価格 Related Content
人口知能(AI)は創薬を含め医薬品開発における長年の問題を解決することのできるテクノロジーとして注目を浴びています。このレポートは、数十億ドルの投資やバイオ医薬品業界と AI 創薬系ベンチャー企業との契約を生み出している主要な機械学習とディープラーニング(アーキテクチャとアルゴリズム)、開発企業、ならびに用途に着目しています。AI は創薬の開発期間を大幅に短縮して、バイオ医薬品業界にとって多大なコスト削減をもたらします。
◆この調査レポートで対象とする主なコンテンツ(詳細は目次のページでご確認ください)
1. 全体概要および結論
3. 創薬プロセスにおける人口知能(AI)の主な用途(それぞれの用途に関連するアーキテクチャとアルゴリズムを含む)
  • 構造ベースのバーチャルスクリーニング
  • リガンドベースのバーチャルスクリーニング
  • 表現型バーチャルスクリーニング
  • デノボ化合物医薬品設計
  • リード最適化
  • 化学物合成計画
  • インタビューを含む企業概要
4. 市場の展望
  • 有力企業
  • 資金調達
5. 業界概要
 
◆このレポートは以下の情報を提供します
技術分析
  • 創薬用途による機械学習とディープラーニング・アルゴリズム
  • AI ソフトウェアの機能
  • 技術の成熟度
 
市場分析
  • 主要な有力企業
  • 用途別の有力企業
  • AI ソフトウェアの機能
  • 用途別の資金調達
  • 商用化の進展
 
製薬会社やバイオテクノロジー企業は、通常、1つの医薬品を市場に投入するために10億ドル以上を費やし、そのプロセスはしばしば10年から15年に及びます。さらに、医薬品の開発プロセスは非常にリスクが高く、開発される医薬品の90%は商業化に至らないと言われています。これら3つの課題のいずれかの解決に大きく寄与する技術があれば、数十億ドル規模の産業に急成長する可能性があります。
 
The development of pharmaceutical drugs is a long and costly process. Companies in the pharmaceutical and biotechnology industries typically spend more than $1 billion to bring a drug to market, in a process that often lasts over 10-15 years. Moreover, the drug development process is very risky - up to 90% of drug candidates are eventually dropped during the process due to issues such as safety and efficacy, resulting in massive losses for companies. Any technology that can contribute significantly to solving any of these three pain points of the drug development process will quickly grow into a multibillion-dollar industry.
 
One such technology that has emerged over the past few years is the use of artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL) algorithms, to improve the drug discovery process. In this early stage of the drug development process, compounds of interest are identified and optimized to have drug-like properties before they are tested in animals, and later, humans. While computers have been used in aiding pharmaceutical R&D for many decades and even AI itself has been applied for more than 10 years, it has only recently started to gather momentum. Case in point - over 80% of funding for AI in drug discovery has been raised in the past 3 years, with investment over 2020, during the height of the COVID-19 pandemic, more than that of 2018 and 2019 combined.
 
Why apply AI in drug discovery?
Companies commercializing AI drug discovery platforms and AI-discovered drugs have shown that the use of algorithms can accelerate a multi-year process to a matter of months. This drastic decrease in development time along with the reduction of the number of compounds that need to be synthesized for laboratory testing, allows for significant cost savings, addressing two core issues of pharmaceutical R&D. While AI drug discovery companies have not necessarily proven that their technologies can bring a drug to market (i.e., successfully pass clinical trials) with higher rates of success than traditional drug discovery methods, the accelerated timelines and potential for cost savings are compelling enough for pharmaceutical companies across the world to either invest internally to develop their own AI capabilities, and to partner up with AI companies in billion-dollar deals.
 
Structure-based virtual screening identifies molecules (ligands) that are predicted to bind to a biological structure (target). Structure-based virtual screening is the leading form of AI in drug discovery being funded today. Source: IDTechEx Research
How is AI applied in drug discovery?
In this report, IDTechEx have focused on the areas of virtual screening and de novo drug discovery as two aspects of drug discovery in which significant activity is occurring. Specific applications such as structure-based virtual screening are receiving significant attention, but it is not yet fully clear which aspect of AI in drug discovery will have the most impact in the future. While structure-based virtual screening is enabled by ready availability of structural data on which to apply AI algorithms, the complexity of biological systems means that structure and fit of compounds do not indicate a compound's safety and efficacy as a drug. Technologies such as phenotypic virtual screening and de novo drug discovery may hold more promise for first-in-class and even multi-target drugs, and all aspects will be supported by the application of AI in the prediction and optimization of a compound's properties.
 
 
What's in the report?
This report covers four aspects of the drug discovery process:
  • Virtual screening, including structure-based virtual screening, ligand-based virtual screening, and phenotypic virtual screening
  • De novo drug design
  • Lead optimization (predicting and optimizing compound properties)
  • Chemical synthesis planning
 
Within each aspect of the drug discovery process discussed, IDTechEx provides:
  • Key players
  • Funding (including breakdown by application and drug type)
  • Technologies
  • Company profiles (including interviews)
  • Progress of candidates to market
  • Software capabilities
  • Technology readiness
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
1.EXECUTIVE SUMMARY
1.1.Report Scope
1.2.Report Scope: Drug Discovery
1.3.Challenges in the Drug Discovery Process
1.4.AI in Drug Discovery: Why Now?
1.5.Drivers & Constraints of AI in Drug Discovery
1.6.AI in Virtual Screening
1.7.AI in Virtual Screening: Key Players
1.8.AI in Virtual Screening: Conclusions
1.9.AI in De Novo Drug Design
1.10.AI in De Novo Drug Design: Key players
1.11.AI in De Novo Drug Design: Conclusions
1.12.AI in Lead Optimization
1.13.AI in Chemical Synthesis Planning
1.14.Funding in AI in Drug Discovery
1.15.AI in Drug Discovery: Business Models
1.16.AI in Drug Discovery Market Landscape: By Geography
1.17.AI in Drug Discovery Market Landscape: By Application
1.18.AI in Drug Discovery: Market Outlook
1.19.Conclusions
2.INTRODUCTION
2.1.Report Scope
2.2.The Drug Development Process
2.3.Report Scope: Drug Discovery
2.4.Key Terminology: Targets and Ligands
2.5.Targets and Ligands: Lock and Key Analogy
2.6.Challenges in the Drug Discovery Process
2.7.Drug Discovery is Expensive
2.8.History of AI in Drug Discovery
2.9.AI in Drug Discovery: Why Now?
2.10.Benefits of AI in Drug Discovery
2.11.Drivers & Constraints of AI in Drug Discovery
3.AI IN DRUG DISCOVERY
3.1.1.What is Artificial Intelligence?
3.1.2.AI, ML & DL in Drug Discovery
3.1.3.AI Methods in Drug Discovery
3.1.4.Applicability and Predictive Capabilities of Key AI Algorithms
3.1.5.Constructing an AI Model: Which Algorithms to Use?
3.1.6.How are Compound Structures Encoded into an AI Model?
3.1.7.Molecular Fingerprints
3.1.8.Simplified Molecular Input Line Entry Specification (SMILES)
3.2.AI in Virtual Screening
3.2.1.AI in Virtual Screening
3.2.2.AI in Virtual Screening: Key Players
3.2.3.AI in Virtual Screening: Funding
3.2.4.AI in Virtual Screening: By Application and Drug Type
3.2.5.Structure-Based Virtual Screening
3.2.6.Recursion Pharmaceuticals
3.2.7.Atomwise
3.2.8.Micar Innovation
3.2.9.TwoXAR
3.2.10.Ligand-Based Virtual Screening
3.2.11.Tencent
3.2.12.Phenotypic Virtual Screening
3.2.13.e-Therapeutics
3.2.14.AI in Virtual Screening: Progress from Lab to Bedside
3.2.15.AI for Virtual Screening: Clinical Trials
3.2.16.AI for Virtual Screening: Partnerships
3.2.17.AI in Virtual Screening: Software Capabilities
3.2.18.AI in Virtual Screening: Technology Readiness
3.2.19.AI in Virtual Screening: Conclusions
3.3.Phenotypic Screening: AI for Cell Sorting and Classification
3.3.1.Image Recognition AI
3.3.2.Classification of Phenotypic HTS Results
3.4.AI in De Novo Drug Design
3.4.1.AI in De Novo Drug Design
3.4.2.AI in De Novo Drug Design: Key players
3.4.3.AI in De Novo Drug Design: Funding
3.4.4.AI in De Novo Drug Design: By Drug Type
3.4.5.How does AI-driven De Novo Drug Design Work?
3.4.6.DMTA Cycles Must be Reduced
3.4.7.How does AI-driven De Novo Drug Design Work?
3.4.8.IBM Research Zurich
3.4.9.Insilico Medicine
3.4.10.Exscientia
3.4.11.CaroCure
3.4.12.Aqemia
3.4.13.GlamorousAI
3.4.14.AstraZeneca
3.4.15.Arzeda
3.4.16.BenevolentAI
3.4.17.AI in De Novo Drug Design: Partnerships
3.4.18.AI in De Novo Drug Design: Progress from Lab to Bedside
3.4.19.AI in De Novo Drug Design: Software Capabilities
3.4.20.AI in De Novo Drug Design: Software Capabilities
3.4.21.AI in De Novo Drug Design: Technology Readiness
3.4.22.AI in De Novo Drug Design: Conclusions
3.5.AI in Lead Optimization
3.5.1.AI in Lead Optimization
3.5.2.History of Lead Optimization
3.5.3.Key Properties and AI Algorithms
3.5.4.Predictive Capabilities of Key AI Algorithms
3.5.5.AI in Lead Optimisation: Process
3.5.6.Quantitative Structure-Activity Relationship Models
3.5.7.Intellegens
3.5.8.PEACCEL
3.5.9.ProteinQure
3.5.10.Iktos
3.5.11.Molomics
3.5.12.Denovicon Therapeutics
3.5.13.XtalPi
3.5.14.Peptone
3.5.15.GlaxoSmithKline
3.5.16.AI in Lead Optimization: Software Capabilities
3.5.17.AI in Lead Optimization: Technology Readiness
3.5.18.AI in Lead Optimization: Conclusions
3.5.19.AI in Lead Optimization: Challenges
3.6.AI in Chemical Synthesis Planning
3.6.1.Chemical Synthesis Planning
3.6.2.Retrosynthesis Pathway Prediction
3.6.3.Computer-Aided Retrosynthesis
3.6.4.AI in Chemical Synthesis Planning
3.6.5.AI in Chemical Synthesis Planning: Software Architecture
3.6.6.AI in Chemical Synthesis Planning: Key Players
3.6.7.Merck KGaA
3.6.8.Iktos
3.6.9.PostEra
3.6.10.Molecule.one
3.6.11.DeepMatter
3.6.12.University of Glasgow
3.6.13.AI in Chemical Synthesis Planning: Partnerships
3.6.14.AI in Chemical Synthesis Planning: Software Capabilities
3.6.15.AI in Chemical Synthesis Planning: Technology Readiness
3.6.16.AI in Chemical Synthesis Planning: Conclusions & Outlook
4.MARKET LANDSCAPE
4.1.Overview
4.2.Funding in AI in Drug Discovery
4.3.AI in Drug Discovery: Business Models
4.4.Collaborations Between Big Pharma and AI Companies
4.5.AI in Drug Discovery Market Landscape: By Geography
4.6.AI in Drug Discovery Market Landscape: By Application
4.7.AI in Drug Discovery Market Landscape: By Drug Type
4.8.AI in Drug Discovery Market Landscape: 2010-2020
4.9.AI in Drug Discovery: Market Outlook
5.OUTLOOK
5.1.AI-Driven Automation
5.2.Is Deep Learning Suitable for Drug Discovery?
5.3.Polypharmacology and Multi-Target Drugs
5.4.Data Availability and Data Quality
5.5.Other challenges facing drug discovery AI companies
5.6.Final Thoughts
5.7.Company profiles
 

About IDTechEx reports

What are the qualifications of the people conducting IDTechEx research?

Content produced by IDTechEx is researched and written by our technical analysts, each with a PhD or master's degree in their specialist field, and all of whom are employees. All our analysts are well-connected in their fields, intensively covering their sectors, revealing hard-to-find information you can trust.

How does IDTechEx gather data for its reports?

By directly interviewing and profiling companies across the supply chain. IDTechEx analysts interview companies by engaging directly with senior management and technology development executives across the supply chain, leading to revealing insights that may otherwise be inaccessible.
 
Further, as a global team, we travel extensively to industry events and companies to conduct in-depth, face-to-face interviews. We also engage with industry associations and follow public company filings as secondary sources. We conduct patent analysis and track regulatory changes and incentives. We consistently build on our decades-long research of emerging technologies.
 
We assess emerging technologies against existing solutions, evaluate market demand and provide data-driven forecasts based on our models. This provides a clear, unbiased outlook on the future of each technology or industry that we cover.

What is your forecast methodology?

We take into account the following information and data points where relevant to create our forecasts:
  • Historic data, based on our own databases of products, companies' sales data, information from associations, company reports and validation of our prior market figures with companies in the industry.
  • Current and announced manufacturing capacities
  • Company production targets
  • Direct input from companies as we interview them as to their growth expectations, moderated by our analysts
  • Planned or active government incentives and regulations
  • Assessment of the capabilities and price of the technology based on our benchmarking over the forecast period, versus that of competitive solutions
  • Teardown data (e.g. to assess volume of materials used)
  • From a top-down view: the total addressable market
  • Forecasts can be based on an s-curve methodology where appropriate, taking into account the above factors
  • Key assumptions and discussion of what can impact the forecast are covered in the report.

How can I be confident about the quality of work in IDTechEx reports?

Based on our technical analysts and their research methodology, for over 25 years our work has regularly received superb feedback from our global clients. Our research business has grown year-on-year.
 
Recent customer feedback includes:
"It's my first go-to platform"
- Dr. Didi Xu, Head of Foresight - Future Technologies, Freudenberg Technology Innovation
 
"Their expertise allows us to make data-driven, strategic decisions and ensures we remain aligned with the latest trends and opportunities in the market."
- Ralf Hug, Global Head of Product Management & Marketing, Marquardt

What differentiates IDTechEx reports?

Our team of in-house technical analysts immerse themselves in industries over many years, building deep expertise and engaging directly with key industry players to uncover hard-to-find insights. We appraise technologies in the landscape of competitive solutions and then assess their market demand based on voice-of-the-customer feedback, all from an impartial point of view. This approach delivers exceptional value to our customers—providing high-quality independent content while saving customers time, resources, and money.

Why should we pick IDTechEx research over AI research?

A crucial value of IDTechEx research is that it provides information, assessments and forecasts based on interviews with key people in the industry, assessed by technical experts. AI is trained only on content publicly available on the web, which may not be reliable, in depth, nor contain the latest insights based on the experience of those actively involved in a technology or industry, despite the confident prose.

How can I justify the ROI of this report?

Consider the cost of the IDTechEx report versus the time and resources required to gather the same quality of insights yourself. IDTechEx analysts have built up an extensive contact network over many years; we invest in attending key events and interviewing companies around the world; and our analysts are trained in appraising technologies and markets.
 
Each report provides an independent, expert-led technical and market appraisal, giving you access to actionable information immediately, rather than you having to spend months or years on your own market research.

Can I speak to analysts about the report content?

All report purchases include up to 30 minutes of telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

What is the difference between a report and subscription?

A subscription from IDTechEx can include more reports, access to an online information platform with continuously updated information from our analysts, and access to analysts directly.

Before purchasing, I have some questions about the report, can I speak to someone?

Please email research@idtechex.com stating your location and we will quickly respond.

About IDTechEx

Who are IDTechEx's customers?

IDTechEx has served over 35,000 customers globally. These range from large corporations to ambitious start-ups, and from Governments to research centers. Our customers use our work to make informed decisions and save time and resources.

Where is IDTechEx established?

IDTechEx was established in 1999, and is headquartered in Cambridge, UK. Since then, the company has significantly expanded and operates globally, having served customers in over 80 countries. Subsidiary companies are based in the USA, Germany and Japan.

Questions about purchasing a report

How do I pay?

In most locations reports can be purchased by credit card, or else by direct bank payment.

How and when do I receive access to IDTechEx reports?

When paying successfully by credit card, reports can be accessed immediately. For new customers, when paying by bank transfer, reports will usually be released when the payment is received. Report access will be notified by email.

How do I assign additional users to the report?

Users can be assigned in the report ordering process, or at a later time by email.

Can I speak to someone about purchasing a report?

Please email research@idtechex.com stating your location and we will quickly respond.
 

価格および注文方法

創薬における AI 2021年: 有力企業、技術および用途

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
¥990,000
電子版_PDF(ユーザー 6-10名)
¥1,406,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,140,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,556,000
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。
AI により創薬の開発期間が5年強から数ヶ月に短縮されます

レポート概要

スライド 161
 

コンテンツのプレビュー

pdf Document Webinar Slides
pdf Document Sample pages
 

Customer Testimonial

quote graphic
"The resources produced by IDTechEx are a valuable tool... Their insights and analyses provide a strong foundation for making informed, evidence-based decisions. By using their expertise, we are better positioned to align our strategies with emerging opportunities."
Director of Market Strategy
Centre for Process Innovation (CPI)
 
 
 
ISBN: 9781913899516

Subscription Enquiry