Energy Storage Report

リチウムイオン電池の市場は2028年までに1300億ドルに達すると考えられます

リチウムイオン電池市場 2018-2028年

原材料から新素材、ギガファクトリー、新興市場


製品情報概要目次価格
リチウムイオン電池は、家庭用電化製品の代表的なものになっています。また、今後5年以内に、電気自動車への導入が増加することも予想されます。このレポートでは、IDTechExは、2028年までの技術比較と市場予測に基づいて、世界のギガファクトリーと新興のバッテリー材料を検証する試みにご案内します。140社を超えるリチウムイオン電池メーカーが一覧表示され、比較され、キーポイントとなる洞察が世界中の主要な業界見本市から収集されます。
1990年代初頭のソニーをはじめとする各企業の先見の明のおかげで、リチウムイオン電池(LIB)は家庭用電子機器を実現する重要な技術に成長しました。それからおよそ25年が経ち、LIBはついに携帯用電子機器産業の枠を越え、輸送分野における革命の足場を築くまでに至っています。陸上、水上、航空を問わず、すべての電動車両(EV)のマーケットシェアはますます拡大し、歴史的に燃焼エンジンのバリューチェーンに組み込まれている企業では、100年に1度の伝統的ビジネスモデルの変革に直面しています。EV市場は2027年までに7,300億ドル規模に成長する見通しで、新しいバリューチェーンの様々なステップが競争の対象になっています。このため(そして都市汚染を抑制するため)に、中国では規制が整備され、BYD、SAIC、Microvastといった新興巨大自動車メーカーが台頭しています。アメリカでは、イーロン・マスク氏や彼が起業したテスラ社など明確なビジョンを持った起業活動に依拠し、日本は依然として売上トップのトヨタや日産といったEVブランドの本場であり、一方ヨーロッパはその自動車製品の伝統を維持すべく、EV周辺に軸足を移し、これまでのディーゼル推進策を大きく転換する方向に動いています。
 
こうしたグランドスキームで中心的な役割を果たしているのが、EVの総コストの最大50%を占めるLIBです。増加傾向が続く市場需要を満たすため、ギガファクトリーやメガファクトリーが世界中で計画・建設されています。それと同時に、採掘企業は24時間体制を敷き、リチウム、コバルト、グラファイトといった重要鉱物の生産拡大に取り組んでいます。このレポートでは、上記すべてについてボトムアップとトップダウンの方法で分析します。
 
Li-ion battery market EV (US$ billion)
 
 
Source: IDTechEx
 
• 本書の第1章では、原材料の採取方法やリチウム、コバルト、ニッケル、グラファイト、銅、アルミ等の重要鉱物の概要、および当該鉱物のLIB産業における重要性、さらには既存企業等が追求しているイノベーションについて取り上げます。
• 第2章では、活性・不活性の電池材料と新規開発が与える市場への影響に注目します。特許訴訟、新カソード組成物、薄形・フレキシブルバッテリーの改善点について、それぞれのディスラプション(破壊的創造)の可能性も含めて考察します。
• 第3章では、世界で稼働している全ギガファクトリーの総覧、140社を超える製造メーカーの一覧表、カソード/地理的ロケーション/セルフォーマット/マーケット別の比較検討と合わせて、電池製造について掘り下げます。
• 第4章では、ポストリチウムイオン、すなわち、リチウムイオンに完全に取って代わる、もしくは航空機用や据置型等の重要なニッチ市場での独占が可能な競合エネルギー蓄積技術について取り上げます。各技術は、その論理的および実際の仕様書に照らして評価され、それら最も有望なイノベーションの真の可能性に関するIDTechExの見解も含めて考察します。
• 最終章では有力者や注目すべきプレーヤーに関する概略を把握していただくために、関連企業のプロフィールをリスト形式で紹介します。紹介する関連企業は、採掘企業からバッテリー材料の専門企業、リチウムイオン製造業者、自動車・海上・航空部門を中心としたエンドユーザーまで多岐にわたります。
• 2018年から2028年までをカバーする当社の特徴とも言うべき10年予測がなければ、IDTechExのレポートとは言えないでしょう。この10年予測には、バッテリー容量の需要(GWh)、ユニット数、市場価値など、バッテリー普及の指数が含まれます。また、LIB を43のEVカテゴリー(陸海空)や、ドローン、家庭用電化製品、ウェアラブル、据置型などに分類することで、比類なきレベルの詳細データを提供しています。EV用LIB市場単体で、2028年には1,250億ドル規模に達する見通しです。
 
IDTechExのアナリストは東京、韓国、ミシガン、ドイツ、シリコンバレーなどの主要な地域でリチウムイオン電池技術のさまざまな側面に関する情報を収集しています。 レポートに記載されている情報は、主要な電池イベントであるバッテリージャパン、AABC、バッテリーショー、その他多くのバッテリー関連イベントでキープレイヤーである研究者と直接ディスカッションしたり、企業訪問、電話インタビューによって収集しています。
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
Further information
If you have any questions about this report, please do not hesitate to contact our report team at research@IDTechEx.com or call one of our sales managers:

Americas: +1 617 577 7890
Europe: +44 1223 812300
China: +86 158 5036 8392
Korea: +82 2 552 5567
Taiwan: +886 (0)9 3999 9792
Rest of Asia: +81 90 1704 1184
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Li-ion batteries revolutionise energy availability
1.2.Why does battery innovation matter?
1.3.LIB cell cost ($/kWh) forecasts according to IDTechEx
1.4.The world is building Gigafactories
1.4.1.LIB production forecasts 2018-2028 (GWh/year)
1.4.2.LIB production forecasts 2018-2028 - electric vehicles
1.4.3.LIB production forecasts 2018-2028 - other markets
1.5.LIB market forecasts 2018-2028 ($B/year)
1.6.LIB standard chemistries in 2018, 2023, and 2028
1.7.List of industry events mentioned in this report
2.INTRODUCTION
2.1.What's the big deal with batteries?
2.1.1.What is energy storage and why does it matter?
2.1.2.LIB evolution over the last quarter of century
2.1.3.Prospects for Li-ion batteries
2.1.4.Challenges ahead
2.1.5.Li-ion batteries in the news
2.2.Words from Venkat Srinivasan, scientist at Argonne National Labs
2.3.Impact of subsidy policies on the Li-ion market
3.LI-ION BASICS
3.1.What is a battery?
3.1.1.Redox reactions
3.1.2.Electrochemical reactions based on electron transfer
3.1.3.Primary (non-rechargeable) vs. secondary (rechargeable) batteries
3.1.4.Electrochemistry definitions
3.1.5.Useful charts for performance comparison
3.1.6.What does 1 kilowatt-hour (kWh) look like?
3.2.Energy density in context
3.2.1.Electrochemical inactive components reduce energy density
3.2.2.Commercial battery packaging technologies
3.2.3.Comparison of commercial battery packaging technologies
3.2.4.Cooling systems for LIBs
3.3.What is a Li-ion battery (LIB)?
3.3.1.There is more than one type of LIB
3.3.2.How can LIBs be improved?
3.3.3.Push and pull factors in Li-ion research
3.3.4.The battery trilemma
3.3.5.A quote from Thomas Edison on batteries
3.3.6.Performance goes up, cost goes down
3.3.7.General Motors' view on battery prices
3.4.Safety
3.4.1.Samsung's Firegate
3.4.2.The risks of a battery-intensive future
4.LI-ION RAW MATERIALS
4.1.Batteries and thermodynamics
4.2.Lithium is not the only element in Li-ion batteries
4.2.1.The elements used in Li-ion batteries
4.2.2.Li-ion raw materials in perspective
4.2.3.Raw materials' criticality
4.2.4.The EU Critical Raw Materials List
4.2.5.Weight content of the main materials in a LIB
4.2.6.Mining supply chain model
4.3.Raw materials at AABC Europe 2017
4.4.Lithium
4.4.1.Where is lithium?
4.4.2.Primary sources for making lithium
4.4.3.Main lithium producers and lithium sources
4.4.4.Secondary sources for making lithium
4.4.5.Where is lithium used
4.4.6.Question: how much Li do we need?
4.4.7.Lithium producers - FMC
4.5.Graphite
4.5.1.From your pencil to your powertrain
4.5.2.Obtaining battery-grade graphite
4.5.3.Making synthetic graphite
4.6.Cobalt
4.6.1.Cobalt reserves and main mining companies
4.6.2.Cobalt - From ore to metal
4.6.3.Cobalt mining in the DRC
4.6.4.A timeline of public scrutiny over cobalt supply
4.6.5.Effects of artisanal mining on urban areas in the DRC
4.6.6.DRC cobalt supply chain
4.6.7.Potential artisanal cobalt stakeholders
4.6.8.The cobalt supply routes and their future
4.7.Nickel
4.7.1.Nickel, worth more than a dime
4.7.2.Nickel reserves and main mining companies
4.7.3.The Nickel Life Cycle
4.7.4.Strategic moves in nickel supply
4.8.Copper
4.8.1.Copper reserves and main mining companies
4.8.2.Copper - From ore to metal
4.8.3.Stocks and flows of copper
4.8.4.Copper content in LIBs
4.8.5.Batteries are reducing copper foil thickness
4.8.6.Electric vehicle Cu demand (in kton)
4.9.Aluminum
4.9.1.Aluminum and the value of recycling
4.9.2.From Bauxite to aluminum
4.10.Silicon
4.10.1.An element with potential
4.11.Raw materials recap
4.11.1.Raw materials recap
4.11.2.Community-related issues in the LIB raw materials supply chain
4.11.3.Li-ion battery recycling
5.LI-ION ELECTRODE MATERIALS
5.1.A family tree of batteries - Lithium-based
5.2.Anode materials
5.2.1.Anode materials - Battery-grade graphite
5.2.2.Anode alternatives - lithium metal and LTO
5.2.3.Lithium metal - Hydro-Quebec
5.2.4.LTO - Toshiba
5.2.5.Anode alternatives - other carbon materials
5.2.6.Hard carbon as additive for LIBs - Kuraray
5.2.7.Anode alternatives - silicon, tin and alloying materials
5.2.8.Silicon-dominant anodes - 3M
5.2.9.Silicon-dominant anodes - Fraunhofer
5.2.10.Silicon-dominant anodes - Enevate
5.2.11.Silicon oxide anodes - Shin-Etsu
5.2.12.Graphene's role in silicon anodes
5.3.Cathode materials
5.3.1.Standard cathode materials - LCO and LFP
5.3.2.Cathode alternatives - NCA
5.3.3.Cathode alternatives - LNMO, NMC, V2O5
5.3.4.NMC/NCM - ANL and ZSW
5.3.5.Future NMC/NCM - BASF
5.3.6.Future NMC/NCM - Umicore
5.3.7.Patent litigation over NMC/NCM - Umicore vs. BASF
5.3.8.Patent litigation - the positive example of LFP
5.3.9.Cathode recap
5.3.10.Li-ion battery cathode recap
5.3.11.New cathode materials - FDK Corporation
5.4.Increasing energy density
5.4.1.Better batteries with a wider cell voltage
5.4.2.Better batteries with a higher electrode capacity
5.4.3.Cathodes for post-Li-ion
5.5.Inactive materials
5.5.1.Inactive materials negatively affect energy density
5.6.Separators
5.6.1.Separators - polyolefins
5.6.2.Separator manufacturing
5.6.3.Polyolefin separators - Celgard
5.6.4.Ceramic coatings - Litarion, Optodot, Nabaltec
5.6.5.Ceramic coatings
5.6.6.Cellulose separators - Uppsala university
5.6.7.The LIB separator market
5.7.Current collectors
5.7.1.Current collectors
5.7.2.Porous current collectors - Nano-Nouvelle
5.8.Binders
5.8.1.Binders - aqueous vs. non-aqueous
5.8.2.Binder processing
5.8.3.Better binders - Solvay
5.8.4.Better binders - Zeon
5.8.5.Better binders - Ashland
5.9.Solvents
5.9.1.NMP vs. aqueous processing
5.10.Conductive additives
5.10.1.Conductive agents
5.10.2.Conductive agents - Imerys
5.10.3.Conductive agents - OCSiAl
5.11.Electrolytes, salts, and additives
5.11.1.Electrolytes - the solvents
5.11.2.Electrolytes - Ionic liquids
5.11.3.Electrolytes - conducting salts
5.11.4.Electrolyte additives
5.12.Solid-state electrolytes
5.12.1.Comparison between inorganic and polymer electrolytes
5.12.2.Lithium-ion batteries vs. Solid-State batteries
5.12.3.Critical aspects of solid electrolytes
5.12.4.Solid electrolytes - Toyota Motors
5.12.5.Solid electrolytes - Solvay
5.12.6.Electrolytes - Solid Power
5.12.7.Solid electrolytes - Solidenergy
5.12.8.Solid electrolytes - US Army Research Lab
5.13.Current Li-ion vs. future Li-ion
5.13.1.Ways to get above 250 Wh/kg
5.13.2.LGChem's view of future batteries
6.LI-ION MANUFACTURING
6.1.What sets the battery industry apart
6.2.Differences between cell, module, and pack
6.3.EV supply chain - not just electrochemistry
6.4.LIB manufacturing system
6.4.1.LIB manufacturing system - from cell to module
6.4.2.Battery pilot line and scale-up issues
6.4.3.The need for a dry room
6.4.4.Electrode slurry mixing
6.4.5.LIB manufacturing system - from module to pack
6.4.6.Stacking methods
6.4.7.Battery essential parameters
6.4.8.LIB manufacturing energy demand
6.4.9.What keeps production costs high
6.5.The LIB manufacturing world
6.5.1.Europe awakens as the Li-ion snowball grows
6.5.2.Old mistakes in the battery and car industries
6.5.3.Gigafactories in a wider context
6.5.4.Battery manufacturing in Germany
6.5.5.The Giga-LIB project
6.5.6.Success stories in Europe
6.5.7.Chinese Lithium-ion battery manufacturers face slump in profits
6.5.8.Battery manufacturing plants - the state of the art
6.6.The Gigafactories
6.6.1.The mirage of manufacturing
6.6.2.LGChem
6.6.3.LGChem's strategy
6.6.4.Samsung SDI
6.6.5.AESC - Nissan + NEC
6.6.6.Tesla/Panasonic
6.6.7.Tesla/Panasonic in Europe?
6.6.8.BYD
6.6.9.CATL
6.6.10.ATL vs. CATL
6.6.11.Microvast
6.6.12.Guoxuan
6.6.13.Boston Power
6.6.14.A123 Systems
6.6.15.Chinese EV battery value chain
6.6.16.Northvolt (formerly SGF Energy)
6.6.17.TerraE
6.7.The Megafactories
6.7.1.Thinking small has advantages and disadvantages
6.7.2.Electrovaya
6.7.3.Xalt Energy
6.7.4.Blue Solutions/Bolloré
6.7.5.Leclanché
6.7.6.Lithops
6.7.7.Varta Microbattery
6.7.8.Tadiran Batteries
6.7.9.BMZ
6.8.Post Li-ion technologies
6.8.1.New kids on the block
6.8.2.Oxis Energy
6.8.3.Faradion
6.9.What sets Europe apart
6.10.A map of European Li-ion (and post Li-ion) factories
7.LIST OF OVER 140 LI-ION MANUFACTURERS WORLDWIDE AND STATISTICS
7.1.Methodology
7.2.Top LIB producers in 2016 and public announcements
7.3.Geographical distribution
7.4.Cathode and anode choices
7.5.Cathode preferences by country of manufacturing
7.6.Cathode choice vs. company size and output
7.7.Cell format
7.8.LIB markets - geographical focus
8.APPLICATIONS
8.1.Overview
8.1.1.Batteries as enabling technology
8.1.2.Batteries are about energy delocalisation
8.1.3.Power range for electronic and electrical devices
8.2.EV market - automotive
8.2.1.Batteries for two- and three-wheelers
8.2.2.People going to work on e-scooters in China
8.2.3.Batteries for electric cars
8.2.4.Lack of standardisation in terms of battery packs
8.2.5.How powertrains affect Li-ion battery needs
8.2.6.Batteries for electric buses
8.2.7.Batteries for electric trucks
8.2.8.Batteries for industrial EVs
8.3.Automotive companies at AABC Europe 2017
8.3.1.Jaguar Land Rover
8.3.2.Volvo
8.3.3.Volkswagen
8.3.4.AUDI
8.3.5.Opel
8.3.6.Mercedes Benz
8.3.7.Ford Motors
8.4.Automotive companies at Battery Japan 2017
8.4.1.Nissan
8.4.2.Toyota
8.4.3.Suzuki
8.4.4.BMW
8.5.EV market - marine and aircraft
8.5.1.What does it take to make electric & hybrid marine mainstream?
8.5.2.Marine references - Corvus Energy
8.5.3.Two strategies for aircraft electrification
8.5.4.Drones - Aerosense
8.5.5.GS Yuasa supplies NASA with Li-ion batteries for the ISS
8.5.6.Uber Elevate's battery requirements for eVTOL
8.6.Stationary storage (BESS)
8.6.1.Stationary energy storage is not new
8.6.2.The increasingly important role of stationary storage
8.6.3.Li-ion is capturing market share at the expense of lead-acid
8.6.4.Is BESS an early stream of revenue for car companies?
8.6.5.Tesla Energy
8.6.6.The Korean battery giants
8.6.7.Are LIBs the best fit for BESS?
8.6.8.Stationary storage in 2015
8.6.9.Stationary storage in 2017
8.7.Other markets
8.7.1.More than batteries for powertrains
8.7.2.Consumer electronics
8.7.3.A stagnant market
8.7.4.Smartphones high growth is fading
8.7.5.Tablet markets demand could stagnate or decline
8.7.6.Laptops may not grow
8.7.7.Digital cameras are disappearing
8.7.8.Smaller batteries for consumer electronics
8.8.Wearables
8.8.1.Wearables and the first steps to bionic humans
8.8.2.Wearables suffer from bulky batteries
8.9.Internet of Things
8.9.1.Still a buzzword for some stakeholders
9.LI-ION BECOMES THIN, FLEXIBLE, STRETCHABLE
9.1.Future trends in battery for consumer electronics
9.2.Flexibility: Big giants' growing interest
9.3.Thinness is still required for now and future
9.4.Slim consumer electronics
9.5.New market: Thin batteries can help to increase the total capacity
9.6.Will modular phones be the direction of the future?
9.7.Comparison of a flexible LIB with a traditional one
9.8.Lithium-polymer flexible cells
9.9.Developers
9.9.1.Huizhou Markyn
9.9.2.Showa Denko Packaging
9.9.3.Semiconductor Energy Laboratory
9.9.4.QinetiQ
9.9.5.Leeds University UK
9.9.6.Ulsan National IST
9.9.7.Stretchable batteries that stick to the skin like a Band-Aid
9.9.8.Cable-type battery developed by LG Chem
9.9.9.Large-area multi-stacked textile battery
9.9.10.Stretchable lithium-ion battery
9.9.11.Foldable lithium-ion battery
9.9.12.Fibre-shaped lithium-ion battery
9.9.13.Fibre-shaped lithium-ion battery that can be woven into electronic textiles
9.9.14.Needle battery
9.9.15.Transparent lithium-ion battery
10.BEYOND LI-ION TECHNOLOGIES
10.1.Is Li-ion the silver bullet of batteries?
10.2.The innovation cycle
10.3.Li-ion vs. future Li-ion vs. beyond Li-ion
10.4.There are several avenues to better batteries
10.5.What is the future battery technology?
11.BENCHMARK OF LI-ION VS. OTHER TECHNOLOGIES
11.1.A family tree of batteries - Li-ion
11.2.A family tree of batteries - Non-Li-ion
11.3.Benchmarking of theoretical battery performance
11.4.Benchmarking of practical battery performance
11.5.Battery technology benchmark - Comparison chart
11.6.Battery technology benchmark - open challenges
12.MARKET FORECASTS
12.1.LIB market trends 2018-2028
12.2.Market size by GWh/year
12.2.1.2018-2028 forecasts - mainstream EV markets (GWh/year)
12.2.2.2018-2028 forecasts - niche EV markets (GWh/year)
12.2.3.2018-2028 forecasts - Consumer Electronics (GWh/year)
12.2.4.2018-2028 forecasts - Wearables (GWh/year)
12.2.5.LIB GWh production forecasts (EV focus) 2018-2028
12.2.6.LIB GWh production forecasts (CE focus) 2018-2028
12.2.7.LIB MWh production forecasts (Wearables) 2018-2028
12.2.8.LIB MWh production forecasts (Wearables) 2018-2028
12.2.9.LIB GWh production forecasts (Stationary storage) 2018-2028
12.3.Market size in units/year
12.3.1.LIB production forecasts 2018-2028 (in billion units)
12.3.2.LIB production forecasts 2018-2028 (in billion units) - consumer electronics
12.3.3.LIB production forecasts 2018-2028 (in billion units) - wearables
12.3.4.LIB production forecasts 2018-2028 (in million units) - summary
12.4.Market size in $B/year
12.4.1.LIB market forecasts 2018-2028 (in $B/year) - industrial electric vehicles
12.4.2.LIB market forecasts 2018-2028 (in $B/year) - buses, trucks, and vans
12.4.3.LIB market forecasts 2018-2028 (in $B/year) - passenger vehicles
12.4.4.LIB market forecasts 2018-2028 (in $B/year) - two- and three-wheelers
12.4.5.LIB market forecasts 2018-2028 (in $B/year) - military and drones
12.4.6.LIB market forecasts 2018-2028 (in $B/year) - marine and aircraft
12.4.7.LIB market forecasts 2018-2028 (in $B/year) - other electric vehicles
12.4.8.LIB production forecasts 2018-2028 (in $B/year) - other markets
12.4.9.LIB Market forecasts ($B) by category 2018-2028 - summary
12.4.10.Lithium-sulphur battery market (MWh and $M) 2018-2028
12.4.11.Li-S battery market compared to Li-ion 2018-2028
13.COMPANY PROFILES
13.1.List of companies profiles included in this report
13.1.1.3M Battery Materials
13.1.2.Aerosense
13.1.3.Airbus Group Innovations Singapore
13.1.4.BASF Battery Materials
13.1.5.BMW
13.1.6.BYD
13.1.7.Contemporary Amperex Tech Ltd (CATL)
13.1.8.EDF
13.1.9.Electrovaya
13.1.10.Faradion
13.1.11.FDK Corporation
13.1.12.LG Chem
13.1.13.Nabaltec AG
13.1.14.Nano-Nouvelle
13.1.15.Nissan
13.1.16.OXIS Energy Ltd
13.1.17.PolyPlus Battery Company
13.1.18.SolidEnergy Systems
13.1.19.Solvay
13.1.20.StoreDot
13.1.21.TankTwo
13.1.22.Tesla, Inc.
13.1.23.Toyota Central R&D Labs, Inc.
13.1.24.Umicore Rechargeable Battery Materials
13.1.25.Volkswagen
14.APPENDIX
14.1.List of abbreviations
14.1.1.Technology and manufacturing readiness
 

Ordering Information

£$¥
Li-ion Batteries 2018-2028 - Electronic (1-5 users)
£4,600.00
Li-ion Batteries 2018-2028 - Electronic (6-10 users)
£6,575.00
Li-ion Batteries 2018-2028 - Electronic and 1 Hardcopy (1-5 users)
£5,000.00
Li-ion Batteries 2018-2028 - Electronic and 1 Hardcopy (6-10 users)
£6,975.00
Li-ion Batteries 2018-2028 - Electronic (1-5 users)
€5,250.00
Li-ion Batteries 2018-2028 - Electronic (6-10 users)
€7,450.00
Li-ion Batteries 2018-2028 - Electronic and 1 Hardcopy (1-5 users)
€5,700.00
Li-ion Batteries 2018-2028 - Electronic and 1 Hardcopy (6-10 users)
€7,900.00
Li-ion Batteries 2018-2028 - Electronic (1-5 users)
$5,995.00
Li-ion Batteries 2018-2028 - Electronic (6-10 users)
$8,495.00
Li-ion Batteries 2018-2028 - Electronic and 1 Hardcopy (1-5 users)
$6,495.00
Li-ion Batteries 2018-2028 - Electronic and 1 Hardcopy (6-10 users)
$8,995.00
Li-ion Batteries 2018-2028 - Electronic (1-5 users)
¥648,000
Li-ion Batteries 2018-2028 - Electronic (6-10 users)
¥928,000
Li-ion Batteries 2018-2028 - Electronic and 1 Hardcopy (1-5 users)
¥698,000
Li-ion Batteries 2018-2028 - Electronic and 1 Hardcopy (6-10 users)
¥980,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

Subscription Enquiry