ロボシャトルと自動運転バス 2024-2044年:技術、トレンド、予測

ロボシャトルと自動運転バス - 米国、EU、中国市場、有力企業、トレンド、安全性、規制、業界分析、センサー、MaaS(モビリティ・アズ・ア・サービス)、実現技術、市場予測

製品情報 概要 目次 価格 Related Content
本レポートでは、ロボシャトルと自動運転バスの市場、技術、有力企業を解説します。15か国から計20社のプレーヤーを取り上げ、プレーヤーと活動の詳細な分析を提供しています。2019年以降の地域別(中国、欧州、米国、その他の地域)の販売実績データと、2024年から2044年までの市場予測を掲載し、ロボシャトルと自動運転バスの市場が2044年までに670億ドルを超える規模に成長すると予測するなど、大きな機会があることを明らかにしています。
「ロボシャトルと自動運転バス 2024-2044年」が対象とする主なコンテンツ
(詳細は目次のページでご確認ください)
● 全体概要(ロボシャトル・自動運転バス業界に影響を与える主なトレンドと予測を掲載)
● ロボシャトル:プレーヤーと分析
□ ロボシャトルのキーポイント
□ 自動運転を管轄する規制当局の分析 - EU、米国、中国
□ プレーヤー一覧 - ロボシャトルのスタートアップ企業
□ 自動運転トラックの冗長性
□ ロボシャトルの分析 - バリューチェーンのプレーヤー
□ ロボシャトルの分析 - TCO(総所有コスト)分析
□ ロボシャトルの分析 - ロボシャトルの成功・失敗理由
● 自動運転バス:プレーヤーと分析
□ バスのカテゴリー
□ 自動運転サービスの種類
□ 自動化の課題
□ プレーヤー一覧 - マイクロバス、中型バス、市バス
□ 自動運転バスの分析 - 運営中の自動運転バス関連企業の数
□ 自動運転バスの分析 - 自動運転バスの成功・失敗理由
● 実現技術:カメラ
□ CMOSの分類、動作原理、動作プロセス、スキャン方式の種類、要件
● 実現技術:サーマルカメラ
□ サーマルカメラのSWOT
□ 高解像度・低コストのIRセンサーの課題
● 実現技術:IR、NIR、SWIR用光学センサー材料としての量子ドット
□ IR、NIR、SWIRの分類、動作原理、動作プロセス、要件
● 実現技術:LiDAR
□ LiDARの分類、動作原理、動作プロセス、要件
□ LiDARのSWOT
● 実現技術:レーダー
□ レーダーのSWOT
□ レーダーの主要コンポーネント、4Dレーダー、イメージングレーダー
● 予測:ロボシャトル
□ 都市への展開の現状と予測 2020-2044年
□ 経済圏別に見るロボシャトルの運賃設定
□ ロボシャトルの販売台数 2020-2044年
□ ロボシャトルの収益、車両販売、旅客運賃 2022-2044年
□ ロボシャトル用センサー 2020-2044年
● 予測:自動運転バス
□ マイクロバスの利用、導入、都市への展開
□ 自動運転バスの販売台数 2022-2044年
□ 車両の価格設定 2022-2044年
□ 自動運転バスの収益 2022-2044年
□ 自動運転バスとロボシャトルの座席定員
□ 自動運転バスのパワートレイン 2023-2044年
□ 自動運転バス用センサー 2024-2044年
● 予測:ロボシャトルと自動運転バスの比較
□ 自動運転バスとロボシャトルの座席定員
□ ロボシャトルと自動運転バスの販売台数 2022-2044年
□ ロボシャトルと自動運転バスの売上収益 2022-2044年
□ ロボシャトル・自動運転バス用センサー 2024-2044年
 
「ロボシャトルと自動運転バス 2024-2044年」は以下の情報を提供します
本レポートの主な事項:
  • ロボシャトル・自動運転バス業界の概要
  • 各プレーヤーの製品、商用化、活動の概要
  • ロボシャトルと自動運転バスのトレンドと性能分析
  • 実現技術概要(カメラ、サーマルカメラ、IR・NIR・SWIR用光学センサー材料としての量子ドット、LiDAR、レーダーなど)
  • ロボシャトルと自動運転バスの今後20年間の販売台数と収益の詳細予測
 
In recent years promise of a public transport revolution is being teased by autonomous buses and roboshuttles. These technologies promise to deliver significant cost reductions for operators and alleviate labor pressures. Although full commercialization remains some distance away, advancements in this sector hold substantial potential for addressing many current industry challenges. This report provides a comprehensive analysis of the roboshuttles and autonomous buses industry, highlighting critical challenges, market dynamics, and future outlook.
 
Critical Challenges in the Roboshuttles and Autonomous Buses Industry
The development of urban public transportation faces several significant challenges. The rising average age of urban populations exacerbates labor shortages, making it increasingly difficult to find enough drivers to meet demand. This issue is further complicated by the rapid pace of urban development, which creates new challenges for efficient and effective public transportation. Additionally, the continuous improvement of urban infrastructure demands innovative solutions that can adapt to evolving needs. Autonomous buses and roboshuttles offer promising solutions to these problems by potentially replacing drivers in all bus use-cases, supporting drivers in conventional buses, and providing fully automated services in specific operational design domains such as airports.
 
Replacing drivers with autonomous systems can significantly lower operational costs. Driver salaries constitute a considerable portion of the operational costs for any commercial vehicle, and autonomous technology can offer large potential savings in this area. Furthermore, autonomous technology promises to drastically improve safety by reducing the number of traffic accidents. Human error accounts for 90-95% of all incidents, and autonomy offers a future where traffic accidents are significantly reduced. Cost savings from autonomous technology could also make it feasible to serve previously unprofitable routes, improving mobility in underserved areas such as small villages.
 
Industry Dynamics and Market Shifts
The roboshuttles market has seen significant shifts in recent years. From 2020 to 2024, the number of players in the market halved, reflecting the typical lifecycle of emerging industry bubbles, where the transition from innovation to commercial viability presents significant challenges. Despite this decrease in player numbers, 2023 saw notable activity in the roboshuttles sector. European leader Navya was acquired and rebranded by a Japanese company, while other financially strong players such as Toyota and Cruise exited the market. Meanwhile, Asian companies like WeRide, QCraft, and PIX Moving are rapidly expanding, demonstrating the dynamic and evolving nature of the industry.
 
 
IDTechEx believes that progress in the autonomous buses sector has been slower due to limited commercial scenarios and regulatory challenges. The higher requirements for infrastructure and lack of specific regulations for autonomous buses hinder widespread adoption. Currently, the lack of global regulations defining testing scope and procedures for autonomous buses impacts their deployment. Additionally, the complex environments in which autonomous buses operate, such as high-speed roads, multiple passengers, and intricate urban settings, pose further challenges. As a result, many companies have focused on testing and commercialization in highly controlled environments, such as closed campuses or predefined routes.
 
Comprehensive Analysis and Future Outlook
This report provides an in-depth analysis of the roboshuttles and autonomous buses industry, including policy support and future forecasts for China, the U.S., and Europe. IDTechEx's research covers a 20-year forecast period, offering detailed market predictions and trends. The report highlights the capabilities of Chinese startups such as WeRide, QCraft, and PIX Moving, and examines different drivetrain configurations. IDTechEx also estimated the manufacturing costs of autonomous shuttles and buses in different markets, revealing a cost disparity of over 3 times. This comprehensive analysis provides valuable insights into the most suitable vehicle capacities and constructive suggestions for industry development.
This report on Roboshuttles and Autonomous Buses provides a detailed analysis of the players and activities within the sector. Current market is contextualised through historical data on sales back to 2019, with regional granularity across China, Europe, USA and RoW. Key challenges and opportunities are identified for the industry, with predictions regarding their commercial deployment and Regional policies. The high-fidelity analysis of each market guides IDTechEx's 20-year forecasts.
 
Key aspects of this report include:
 
  • An overview of the Roboshuttles and Autonomous Buses industry
  • A summary of each player's product, commercialization, and activity
  • Roboshuttles and Autonomous Buses trends and performance analysis
  • An overview of Enabling Technologies include Cameras, Thermal Cameras, Quantum Dots as Optical Sensor Materials for IR, NIR, SWIR, LiDAR, and Radar.
  • Granular 20-year forecasts for Roboshuttles and Autonomous Buses sales and revenue
Report MetricsDetails
Historic Data2019 - 2023
CAGRThe global Roboshuttles and Autonomous Buses market will grow at a CAGR of 38.9% between 2034 and 2044 - reaching nearly half a million sales annually.
Forecast Period2024 - 2044
Forecast Unitsunits, US$
Regions CoveredWorldwide, United States, China, Europe
Segments CoveredRoboshuttles, sensors, transport as a service, autonomous buses, electric buses,
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
1.EXECUTIVE SUMMARY
1.1.Roboshuttles and Autonomous Buses 2024-2044
1.2.What makes it a roboshuttle?
1.3.Distribution of roboshuttle cities
1.4.Autonomous bus introduction
1.5.Categories of bus
1.6.Technology Readiness
1.7.Different powertrains for different vehicles
1.8.Types of service for roboshuttles and buses
1.9.Number of active companies
1.10.The Sensor Trio
1.11.Sensor suites for Roboshuttles and autonomous buses
1.12.SWOT analysis and comparisons for roboshuttles and autonomous buses
1.13.Commercial readiness and opportunity comparison of roboshuttles and autonomous buses
1.14.IDTechEx predicted timelines
1.15.Roboshuttle and unit sales 2020-2044
1.16.Roboshuttle revenues, vehicle sales and passenger fares 2022-2044
1.17.Roboshuttle revenues, vehicle sales and passenger fares 2022-2044
1.18.Autonomous bus unit sales 2022-2044
1.19.Autonomous bus unit sales by regions 2022-2044
1.20.Autonomous bus revenue 2022-2044
1.21.Autonomous bus revenue by region 2022-2044
1.22.Roboshuttle and autonomous bus sales revenue 2022-2044
1.23.Access more with an IDTechEx Subscription
2.ROBOSHUTTLES: PLAYERS AND ANALYSIS
2.1.Introduction
2.1.1.Key Takeaways For Roboshuttles
2.1.2.What Makes it a Roboshuttle? - Part 1
2.1.3.What Makes it a Roboshuttle? - Part 2
2.1.4.Table Comparison Of Active Companies
2.1.5.EasyMile
2.1.6.EasyMile Real World Trials And Testing
2.1.7.HOLON
2.1.8.Auve Tech
2.1.9.GAMA (Formerly Navya)
2.1.10.GAMA Use Case Examples
2.1.11.GAMA (Formerly Navya)'s Business Model
2.1.12.Zoox
2.1.13.Zoox Sensor Suite
2.1.14.PIX Moving
2.1.15.Yutong and WeRide
2.1.16.Yutong Use Cases accelerate by WeRide.ai
2.1.17.Qcraft
2.1.18.Apollo - Autonomous Branch of Baidu
2.1.19.Ohmio - Lift
2.1.20.Ohmio Trials
2.1.21.Lohr, Torc and Transdev
2.1.22.Beep -Olli 2.0
2.2.Roboshuttle projects that have become dormant
2.2.1.Table Comparison Of Inactive Companies
2.2.2.ZF - A Robot Shuttle Future.
2.2.3.ZF - Robot Shuttle Deployment (Rivium3.0)
2.2.4.ZF with authorized service providers and manufacturers
2.2.5.ZF - Strategic Realignment 2030
2.2.6.Toyota e-PALETTE
2.2.7.Cruise Origin
2.3.Roboshuttle projects that have been discontinued
2.3.1.Table Comparison of Discontinued Companies
2.3.2.NEVS
2.3.3.May Mobility
2.3.4.Higer
2.3.5.Coast
2.3.6.Sensible 4 - GACHA
2.3.7.IAV and the HEAT project
2.3.8.Continental
2.3.9.Bosch
2.3.10.Local Motors - Olli
2.3.11.e.Go Moove
2.3.12.DGWORLD
2.3.13.Projects That Are No Longer Active (1)
2.3.14.Projects That Are No Longer Active (2)
2.3.15.Projects That Are No Longer Active (3)
2.4.Roboshuttles analysis and conclusions
2.4.1.Table Comparison Of Active Companies
2.4.2.Technology Readiness before 2023
2.4.3.Technology Readiness - Still Active in 2024
2.4.4.Decline in Roboshuttle Companies (1)
2.4.5.Decline in Roboshuttle Companies (2)
2.4.6.Where Players Exit
2.4.7.Where Are Players In The Value Chain (1)
2.4.8.Where Are Players In The Value Chain (2)
2.4.9.Passenger Capacity
2.4.10.Total Cost of Ownership Analysis (1)
2.4.11.Total Cost of Ownership Analysis (2)
2.4.12.Reasons Roboshuttles Will Succeed (1)
2.4.13.Reasons Roboshuttles Will Succeed (2)
2.4.14.Reasons Roboshuttles Will Succeed (3)
2.4.15.Reasons Roboshuttles Will Fail (1)
2.4.16.IDTechEx Opinion On Roboshuttles
3.AUTONOMOUS BUSES: PLAYERS AND ANALYSIS
3.1.Introduction
3.1.1.Categories of Bus
3.1.2.Bus Category Sizing
3.1.3.Reasons to automate
3.1.4.Types of Autonomous Services
3.1.5.Challenges of Automating
3.1.6.Table Comparison Of Active Players (1)
3.1.7.Table Comparison Of Active Players (2)
3.2.Players - Minibuses
3.2.1.eVersum
3.2.2.King Long
3.2.3.BrightDrive
3.2.4.Aurrigo
3.2.5.Hyundai Autonomous Bus
3.2.6.Volkswagen
3.2.7.Volkswagen ID.Buzz - Sensor Suite
3.2.8.Volkswagens MOIA Project
3.2.9.Perrone Robotics - Overview
3.2.10.Perrone Robotics - Sensor Suite
3.2.11.Perrone Robotics - Deployment And Planned Rollout
3.3.Players - Midibuses
3.3.1.eVersum
3.3.2.ADASTEC
3.3.3.ADASTEC and Karsan - Sensor Suite
3.3.4.ADASTEC Trial deployments
3.3.5.Golden Dragon ASTAR
3.3.6.QCraft
3.3.7.QCraft - Sensor Suite
3.3.8.Zhongtong
3.4.Players - City Buses
3.4.1.Hyundai Autonomous Bus
3.4.2.Fusion Processing - Overview
3.4.3.Fusion Processing - Testing and Trials
3.4.4.ANA and BYD - Airport Bus Trials
3.4.5.New Flyer - Overview
3.4.6.New Flyer - Sensor Suite
3.4.7.DeepBlue
3.4.8.DeepBlue Trials
3.5.Projects that have become dormant
3.5.1.LILEE
3.5.2.Irizar
3.5.3.Iveco
3.6.Companies No Longer Active In Autonomous Buses
3.6.1.ST Engineering
3.6.2.Daimler
3.6.3.Scania
3.6.4.Proterra
3.6.5.Other Big Players Either Not Involved Or Stopped
3.7.Autonomous Bus Analysis
3.7.1.Bus Sizes
3.7.2.Activity
3.7.3.Technology Readiness
3.7.4.Few Large Trials
3.7.5.Table Comparison Of Active Players (1)
3.7.6.Table Comparison Of Active Players (2)
3.7.7.Vehicle Type vs Company Type
3.7.8.Companies in Value Chain
3.7.9.Options For Early Deployments Of Autonomous Tech
3.7.10.Autonomous Bus Deployments in other ODDs
3.7.11.Drivetrains - Most Are Thinking Electric
3.7.12.Reasons Autonomous Buses Will Be A Success
3.7.13.Reasons Autonomous Buses Will Fail
3.7.14.IDTechEx Opinion On Autonomous Buses
4.ENABLING TECHNOLOGIES: CAMERAS
4.1.Cameras in Roboshuttles and Autonomous buses
4.2.RGB/Visible light camera
4.3.CMOS image sensors vs CCD cameras
4.4.Key Components of CMOS
4.5.Front vs backside illumination
4.6.Reducing Cross-talk
4.7.Global vs Rolling Shutter
4.8.TPSCo: Leading foundry for global shutter
4.9.Sony: CMOS Breakthrough?
4.10.Sony: BSI global shutter CMOS with stacked ADC
4.11.OmniVision: 2.µm global shutter CMOS for automotive
4.12.Hybrid organic-Si global shutter CMOS
4.13.Event-based Vision: A New Sensor Type
4.14.What is Event-based Sensing?
4.15.General event-based sensing: Pros and cons
4.16.What is Event-based Vision? (I)
4.17.What is Event-based Vision? (II)
4.18.What is event-based vision? (III)
4.19.What does event-based vision data look like?
4.20.Event Based Vision in Autonomy?
5.ENABLING TECHNOLOGIES: THERMAL CAMERAS
5.1.Thermal Cameras in Roboshuttles and Autonomous buses
5.2.Segmenting the Electromagnetic Spectrum
5.3.Thermal camera SWOT
5.4.The Need for NIR
5.5.OmniVision: Making Silicon CMOS Sensitive to NIR
5.6.OmniVision: Making Silicon CMOS Sensitive to NIR
5.7.Motivation for Short-Wave Infra-Red (SWIR) Imaging
5.8.Why SWIR in Autonomous Mobility
5.9.Other SWIR Benefits: Better On-Road Hazard Detection
5.10.SWIR Sensitivity of Materials
5.11.SWIR Imaging: Incumbent and Emerging Technology Options
5.12.The Challenge of High Resolution, Low Cost IR Sensors
5.13.Silicon Based SWIR Detection - TriEye
6.ENABLING TECHNOLOGIES: QUANTUM DOTS AS OPTICAL SENSOR MATERIALS FOR IR, NIR, SWIR
6.1.Quantum Dots as Optical Sensor Materials
6.2.Quantum Dots: Choice of the Material System
6.3.Other Ongoing Challenges
6.4.Advantage of Solution Processing
6.5.QD-Si CMOS at IR and NIR
6.6.Hybrid QD-Si Global Shutter CMOS at IR and NIR
6.7.Emberion: QD-Graphene SWIR Sensor
6.8.Emberion: QD-Graphene-Si Broadrange SWIR sensor
6.9.SWIR Vision Sensors: First QD-Si Cameras and/or an Alternative to InVisage?
6.10.QD-ROIC Si-CMOS integration examples (IMEC)
6.11.QD-ROIC Si-CMOS Integration Examples (RTI International)
6.12.QD-ROIC Si-CMOS Integration Examples (ICFO)
7.ENABLING TECHNOLOGIES: LIDAR
7.1.LiDAR in Roboshuttles and Autonomous buses
7.2.LiDAR classifications
7.3.Automotive LiDAR: Operating process
7.4.Automotive LiDAR: Requirements
7.5.LiDAR system
7.6.LiDAR working principle
7.7.Laser range finder function for the first production car
7.8.Comparison of lidar product parameters
7.9.TOF vs FMCW LiDAR
7.10.LiDAR scanning categories
7.11.Summary of lidars with various beam steering technologies
7.12.Comparison of common beam steering options
7.13.Overview of beam steering technologies
7.14.Point cloud
7.15.Lidar signal applications
7.16.3D point cloud modelling
7.17.LiDAR challenges
7.18.Poor weather performance: Challenges & solutions
7.19.Early possible adoption of Lidar
7.20.Velodyne lidar portfolios
7.21.Valeo SCALA
7.22.Livox: Risley prisms
7.23.Automotive lidar players by technology
8.ENABLING TECHNOLOGIES: RADAR
8.1.Radar in Roboshuttles and Autonomous buses
8.2.Radar SWOT
8.3.Typical Sensor Suite for Autonomous Cars
8.4.Radar Has a Key Place in Automotive Sensors
8.5.The Need for and Emergence of Imaging Radar
8.6.4D Radars and Imaging Radars
8.7.Radar Trends: Volume and Footprint
8.8.Radar Trends: Packaging and Performance
8.9.Radar Trends: Increasing Range
8.10.Radar Trends: Field of View
8.11.Radar Trilemma
8.12.Radar Anatomy
8.13.Radar Key Components
8.14.Primary Radar Components - The Antenna
8.15.Primary Radar Components - the RF Transceiver
8.16.Primary Radar Components - MCU
8.17.Automotive Radars: Frequency Trends
8.18.Trends in Transceivers
8.19.Two Approaches to Larger Channel Counts
8.20.Semiconductor Technology Trends in Radar
8.21.Funding for Radar Start-ups
8.22.Future Radar Packaging Choices
8.23.Leading players - tier 1 suppliers
8.24.Transceiver suppliers
8.25.Supply chain
8.26.Example products from a tier 1 - Continental
8.27.Example products from a tier 1 - Bosch
8.28.Example of radar start-up - Arbe
8.29.Arbe and its Investors
8.30.Example of radar start-up - Zadar
9.FORECASTS
9.1.Notes on the forecasts chapter
9.2.Forecasts: Roboshuttles
9.2.1.Method
9.2.2.Vehicle assumptions
9.2.3.Cities Considered
9.2.4.Adoption within cities
9.2.5.Current and forecasted city roll out 2020-2044 (1)
9.2.6.Current and forecasted city roll out 2020-2044 (2)
9.2.7.Distribution of roboshuttle cities
9.2.8.Roboshuttle fare pricing for different economies
9.2.9.Roboshuttle price decline
9.2.10.Roboshuttle unit sales 2020-2044
9.2.11.Roboshuttle revenues, vehicle sales and passenger fares 2022-2044
9.2.12.Sensors for roboshuttles 2020-2044
9.3.Forecasts: Autonomous Buses
9.3.1.Method
9.3.2.Minibus utilization, adoption and city roll-out
9.3.3.Autonomous bus adoption
9.3.4.Autonomous bus unit sales 2022-2044
9.3.5.Autonomous bus unit sales by regions 2022-2044
9.3.6.Vehicle pricing
9.3.7.Autonomous bus revenue 2022-2044
9.3.8.Autonomous bus revenue by region 2022-2044
9.3.9.Powertrains of autonomous buses 2023-2044
9.3.10.Sensors for autonomous buses 2024-2044
9.4.Forecasts: Roboshuttles and Autonomous Buses Comparison
9.4.1.Seating capacity in autonomous buses and roboshuttles
9.4.2.Roboshuttle and Autonomous Bus Unit Sales 2022-2044
9.4.3.Roboshuttle and Autonomous Bus Sales Revenue 2022-2044
9.4.4.Sensors for Roboshuttles and Autonomous Buses 2024-2044
 

価格および注文方法

ロボシャトルと自動運転バス 2024-2044年:技術、トレンド、予測

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
電子版_PDF(ユーザー 1-5名)
¥990,000
電子版_PDF(ユーザー 6-10名)
¥1,406,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,140,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。
ロボシャトルと自動運転バスの世界売上収益は2044年までに670億ドルを超える規模になる見込み

レポート概要

スライド 307
フォーキャスト 2044
 

コンテンツのプレビュー

pdf Document EOY 2024 Webinar Slides
pdf Document Webinar Slides
pdf Document Sample pages
 

Customer Testimonial

quote graphic
"IDTechEx consistently provides well-structured and comprehensive research reports, offering a clear and holistic view of key trends... It's my first go-to platform for quickly exploring new topics and staying updated on industry advancements."
Head of Foresight - Future Technologies
Freudenberg Technology Innovation SE & Co. KG
 
 
 
ISBN: 9781835700488

Subscription Enquiry