世界の定置型燃料電池市場は2035年までに80億ドルを超える規模に成長する見込み

定置型燃料電池市場 2025-2035年:技術、有力企業、予測

燃料電池の種類別、主要応用分野別、運用形態別に見る定置型燃料電池市場の今後10年間の詳細予測。技術市場、主要企業、データに基づいたベンチマーク評価の批評的分析。


製品情報 概要 目次 価格 Related Content
本レポートでは、定置型燃料電池市場、技術、プレーヤーを徹底評価しています。6つの主要燃料電池タイプの分析、5つの主要な応用分野によるセグメンテーション、2016年から2024年の過去データを用いて、市場全体を包括的にレビューし、詳細な見通しを提供します。39項目に分かれる詳細な市場予測では、2035年までに80億ドルを超える規模になる定置型燃料電池市場の成長を概説しています。
「定置型燃料電池市場 2025-2035年」が対象とする主なコンテンツ
(詳細は目次のページでご確認ください)
● 全体概要および結論
● 主な定置型燃料電池技術
□ プロトン交換膜燃料電池(PEMFC)
□ 固体酸化物形燃料電池(SOFC)
□ リン酸形燃料電池(PAFC)
□ アルカリ電解質形燃料電池(AFC)
□ 溶融炭酸塩形燃料電池(MCFC)
□ 直接メタノール形燃料電池(DMFC)
● 燃料電池用燃料
● 有力企業分析(25社以上の企業概要)
● 主な定置型電力用途
□ 燃料電池の運用形態
□ 公益事業用電力
□ 工業用電力
□ 商業用途
□ データセンターと通信
□ 住宅用途
● 今後10年間の詳細な市場予測・展望
 
「定置型燃料電池市場 2025-2035年」は以下の情報を提供します
燃料電池技術と市場主要企業の詳細な批評:
  • プロトン交換膜燃料電池(PEMFC)、固体酸化物形燃料電池(SOFC)、リン酸形燃料電池(PAFC)、アルカリ電解質形燃料電池(AFC)、溶融炭酸塩形燃料電池(MCFC)、直接メタノール形燃料電池(DMFC)の各技術概要と最新技術動向
  • 各種燃料電池の批評的分析とベンチマーク評価(仕様に関する主な考慮事項ごとに分類)
  • 主要企業と新興企業の詳細な批評(燃料電池技術別)
定置型燃料電池の利用を見込む主要応用分野:
  • 燃料電池の各運用形態概要(常用発電、非常用発電、ピークシェービングなど)と各分野の展望
  • 定置型燃料電池の6主要応用分野(公益事業用、工業用、商業用、データセンター・通信用、住宅用の各発電)の各市場セクター仕様要件を概説
  • 各種燃料電池の応用分野への適合性評価(事例を用いた詳細な批評と技術ベンチマーク評価を含む)
  • 各用途の展望と各種燃料電池での予想される動向評価
  • 競合する定置型発電技術の概要とそれらから定置型燃料電池市場が受ける影響分析
徹底的な批評的市場分析:
  • 定置型燃料電池市場参入企業を技術別に批評
  • 2025~2035年定置型燃料電池市場全体展望
  • 定置型燃料電池市場の予測(燃料電池種類別、応用分野別、運用形態別)
 
IDTechEx's latest report "Stationary Fuel Cell Markets 2025-2035: Technologies, Players & Forecasts" comprehensively covers the types of fuel cell technologies and the key specifications underpinning their emergence within the stationary power market. Benchmarking of the key fuel cell technologies, including proton exchange membrane fuel cells (PEMFCs), solid oxide fuel cells (SOFC), phosphoric acid fuel cells (PAFC), alkaline fuel cells (AFC), molten carbonate fuel cells (MCFC) and direct methanol fuel cells (DMFC), along with 25+ profiles of key market players, outlines the overall stationary fuel cell market. Segmentation of each of the six key stationary application areas, including utilities, industrial, commercial, data centres & telecoms and residential applications, is carried out alongside detailed analysis of the technological requirements, case studies and sector outlooks. Further breakdown of the market, including fuel cell operating modes, alternative power generation technologies, and the outlook of fuels used for fuel cells, helps to provide a clear status for the future stationary fuel cell market. The total stationary fuel cell market was valued at US$1.2 billion in 2023 and is forecast to exceed US$8 billion by 2035, representing a CAGR of 16.7%.
 
Outline of the major stationary fuel cell application areas and the current typical use cases by fuel cell type, with the key specification considerations for each application also listed.
 
Proton exchange membrane fuel cells are a promising back-up power technology
PEMFCs have received the greatest commercial attention, due to growing interest into their integration within automotive applications. However, a principal market for PEMFCs is within stationary power generation, particularly for back-up applications within data centres & telecoms and commercial buildings (hospitals, offices etc). PEMFCs operate using pure hydrogen fuel (>99.9%), combining this with oxygen to generate electricity, and water and heat as byproducts. Their low operating temperature (below 100°C), results in rapid start-up times, allowing a quick response to power demand changes.
 
With growing concern over global carbon dioxide emissions (CO2) and the expansion of the hydrogen economy, PEMFCs are well aligned for the replacement of diesel generators and the scale up of green power generation technology installations. Limitations due to their lack of fuel flexibility currently hinder widespread uptake, however, in this report, IDTechEx predicts the stationary PEMFC market to grow in line with the development of the hydrogen economy.
 
Solid oxide fuel cells set to leverage early adoption for long term success
The current state of the hydrogen economy is a limiting factor in the uptake of hydrogen fuel cells. Alternative technologies which can operate on multiple fuels are of interest. SOFCs are a high temperature alternative to PEMFCs. Operating at temperatures in excess of 650°C increases their tolerance to impurities and allows for the internal reforming of cheaper and readily available hydrogen carrier fuels, including natural gas and ammonia. The fuel cell exhaust can also be harnessed for combined heat and power operation, to provide heat to homes and buildings, increasing the overall cell efficiency to over 80%. Despite this, slow start-up times and high costs of thermally resistant materials have limited the overall uptake of SOFCs to predominately continuous power generation applications.
 
In this report, IDTechEx further outlines the key application areas for SOFCs, and the outlook for this technology. The wide availability of natural gas due to existing production and supply infrastructure, helps to drive current adoption of SOFCs. Consequently, SOFCs present a unique opportunity as a transition technology whilst the hydrogen economy develops, seeing near-term market adoption, and continued growth over the coming decade.
 
Alternative fuel cell technologies compete with PEMFC and SOFC front runners
PEMFCs and SOFCs have attracted the greatest market attention, however, alternative fuel cell technologies like AFCs, MCFCs, PAFCs and DMFCs still compete. The high temperature operation of MCFCs makes them a particular competitor to SOFCs. With a similar ability to operate on hydrogen carrier fuels via internal reforming, MCFCs can also be used for continuous high-power generation, operating with heat recovery. MCFCs require carbon dioxide (CO2) to operate, meaning they have been considered for carbon capture applications alongside power generation, particularly for the industrial sector, where an added value stream incentivizes market uptake.
 
Low temperature alternatives like AFCs and PAFCs have technological legacies dating back to the NASA space missions in the 1960s and with DMFCs a specification variation of PEM fuel cells. The acidic nature of PAFCs, however, has limited their market adoption, with original market players choosing to segue into the development of either PEMFCs or SOFCs. AFCs, like PEMFCs, can commence operation in a matter of seconds, leading to growth of uptake within the back-up power market. However, limited power densities and outputs compared to PEMFCs restrict their overall application scope. Similarly, DMFCs have been used for low power generation requirements, with their ability to operate using low cost and widely available methanol fuel helping to drive use cases. Limitations to their power densities, however, again hinder their uptake to low-power back-up applications, particularly for remote monitoring and telecoms. This report finds that DMFCs will be restricted to specific and niche use cases.
 
Lowering of capital expenditure will help drive widespread fuel cell uptake
Traditional power generation technologies like steam and gas turbines and diesel generators have low costs associated, helping to maintain their widespread market uptake, and fixed installation base. However, growing concerns over energy security and global decarbonization targets have placed greater strains on these technologies and sees companies begin to seek green power generation alternatives.
Key Aspects
This report provides critical intelligence on the stationary fuel cell market, segmented by technology type, key players and the major applications. Each of the main stationary power application areas are covered in depth, with IDTechEx providing an independent assessment of the suitability of each fuel cell type for the market sector. Analysis of alternative power generation technologies, helps to provide granular ten year forecasts of the entire stationary fuel cell market. This report includes:
 
An in-depth review of fuel cell technologies and major market players
  • Overview of proton exchange membrane fuel cells (PEMFC), solid oxide fuel cells (SOFC), phosphoric acid fuel cells (PAFC), alkaline fuel cells (AFC), molten carbonate fuel cells (MCFC) and direct methanol fuel cells (DMFC) technologies and emerging technological developments
  • Critical analysis and benchmarking of each of the fuel cell types, segmented by the main specification considerations
  • Detailed review of the major and emerging players by fuel cell technology
 
Breakdown of the key application areas for stationary fuel cell use
  • Overview of each of the operating modes of fuel cells, including continuous power generation, back-up power generation and peak shaving, and outlook for each area
  • Segmentation of the six main application areas for stationary fuel cells, including utilities, industrial, commercial, data centers & telecommunications and residential power generation, outlining the specification requirements for each market sector
  • Evaluation of the suitability of each fuel cell type for the application areas, including detailed case study review and technology benchmarking
  • Assessment of the outlook for each application and the trends expected for each fuel cell type
  • Outline of competing stationary power generation technologies and analysis of their impact to the stationary fuel cell market
 
Critical market analysis throughout
  • Reviews of stationary fuel cell market players throughout each technology type
  • Outlook of the overall stationary fuel cell market for 2025-2035
  • Segmentation of the stationary fuel cell market forecasts by fuel cell type, application area and operating mode
Report MetricsDetails
Historic Data2016 - 2024
CAGRThe global stationary fuel cell market is set to exceed US$8 billion by 2035, representing a CAGR of 16.7%.
Forecast Period2025 - 2035
Forecast UnitsMarket demand (MW), market value (USD$)
Segments CoveredFuel cell technology (PEMFC, SOFC, AFC, PAFC, MCFC, DMFC), Fuel cell application (Utilities, Industrial, Commercial, Data & Telecommunications, Residential), Operating mode (continuous power, back-up power)
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Report introduction
1.2.What are fuel cells?
1.3.Types of fuel cells
1.4.Proton exchange membrane fuel cell (PEMFC) technology overview
1.5.Solid oxide fuel cell (SOFC) technology overview
1.6.Phosphoric acid fuel cell (PAFC) technology overview
1.7.Alkaline fuel cell (AFC) technology overview
1.8.Molten carbonate fuel cell (MCFC) technology overview
1.9.Direct methanol fuel cell (DMFC) technology overview
1.10.Benchmarking of stationary fuel cell technologies
1.11.Stationary fuel cell market overview
1.12.Global hydrogen policies driving decarbonization and the fuel cell market
1.13.The hydrogen economy and its impact on the fuel cell market
1.14.Alternative low carbon fuels for fuel cells
1.15.Types of stationary power generation - Operating modes
1.16.Stationary fuel cell applications
1.17.Overview of fuel cells used by application and key specification considerations
1.18.Fuel cells for utility power
1.19.Fuel cells for industrial applications
1.20.Fuel cells for commercial applications
1.21.Fuel cells for data centres and telecommunications
1.22.Residential fuel cells
1.23.Alternative power generation technologies
1.24.Fuel cell demand by technology type
1.25.Fuel cell market value by technology type
1.26.Outlook of the stationary fuel cell market
1.27.Access More With an IDTechEx Subscription
2.MARKET FORECASTS
2.1.Global stationary fuel cell demand (MW) - segmented by fuel cell type
2.2.Global stationary fuel cell market value (US$) - segmented by fuel cell type
2.3.Global stationary fuel cell demand (MW) - split by operating mode
2.4.Global PEMFC demand (MW) - segmented by application
2.5.Global SOFC demand (MW) - segmented by application
2.6.Global PAFC demand (MW) - segmented by application
2.7.Global AFC demand (MW) - segmented by application
2.8.Global MCFC demand (MW) - segmented by application
2.9.Global DMFC demand (MW) - segmented by application
3.INTRODUCTION
3.1.Report introduction
3.2.What are fuel cells?
3.3.NASA space shuttle missions and fuel cell development
3.4.Types of fuel cells
3.5.Stationary fuel cell applications
3.6.Overview of fuel cells used by application and key specification considerations
3.7.Combined heat and power
3.8.Global energy and renewable energy demand
3.9.Global hydrogen policies
3.10.The Korean Hydrogen Bidding Market
3.11.Carbon capture and fuel cells
4.FUELS FOR STATIONARY FUEL CELLS
4.1.Fuels for fuel cells
4.2.Desire for emission-free power
4.3.Low carbon fuels for fuel cells
4.4.Benchmarking volumetric energy densities of fuel cell fuels
4.5.Benchmarking carbon emissions of fuel cell fuels
4.6.Normalized benchmarking of fuel cell fuels
4.7.Cost of fuel versus energy density
4.8.The colours of hydrogen
4.9.Hydrogen electrolyzer systems for green hydrogen production
4.10.Ammonia fuel and the Haber Bosch process
4.11.Ammonia cracking technology
4.12.Methanol fuel and production
4.13.Overview of e-fuels
4.14.Liquefied natural gas fuel
5.FUEL CELL TECHNOLOGIES AND PLAYERS
5.1.1.What are fuel cells?
5.1.2.Comparison of fuel cell technologies
5.1.3.Comparison of fuel cell specifications continued
5.1.4.Benchmarking of fuel cells
5.2.Proton exchange membrane fuel cells
5.2.1.Overview of PEMFCs
5.2.2.PEMFCs operating principle
5.2.3.Major components for PEMFCs
5.2.4.Proton exchange membrane electrolyte - Nafion
5.2.5.Bipolar plates structure and assembly
5.2.6.Metallic vs carbon based BPPs
5.2.7.Gas diffusion layer purpose and structure
5.2.8.Cell catalysts
5.2.9.Catalytic poisoning
5.2.10.Water management in PEMFCs
5.2.11.PEMFC advantages and disadvantages
5.2.12.PEMFC technology conclusions
5.2.13.Latest research and development for PEMFCs
5.2.14.High temperature PEMFCs (HT-PEMFCs)
5.2.15.PFSA membrane developments
5.2.16.Bipolar plates developments
5.2.17.Electrocatalyst developments
5.2.18.Concerns with PFAS (including PFSA)
5.2.19.Introduction to PFAS
5.2.20.PFAS material concerns
5.2.21.PEMFC market players
5.2.22.Overview of the stationary PEMFC market
5.2.23.Acquisitions by major players
5.2.24.Overview of stationary PEMFC players in North American market
5.2.25.Overview of stationary PEMFC players in European market
5.2.26.Overview of stationary PEMFC players in Asia-Pacific market
5.2.27.Overview of PEMFC players within the mobility & transportation sector
5.2.28.Ballard Power Systems Overview
5.2.29.Ballard technologies
5.2.30.Ballard Power stationary fuel cell technology
5.2.31.Ballard Power global manufacturing capabilities and key partners
5.2.32.Ballard Power financials
5.2.33.Plug Power overview
5.2.34.Plug Power technology overview
5.2.35.Plug Power stationary power technology and fuelling
5.2.36.Plug Power customers
5.2.37.Plug Power financials
5.2.38.Plug Power revenue splits
5.2.39.PowerCell Group overview
5.2.40.PowerCell Group technologies
5.2.41.PowerCell Group partnerships and agreements
5.2.42.PowerCell Group financials
5.2.43.PowerCell Group financial analysis
5.2.44.Intelligent Energy overview
5.2.45.Intelligent Energy stationary power technology
5.2.46.Intelligent Energy partnerships
5.2.47.Toshiba overview
5.2.48.Toshiba fuel cell technology
5.2.49.Cummins overview
5.2.50.Accelera by Cummins fuel cell technology
5.2.51.SFC Energy overview
5.2.52.SFC Energy PEMFC technology
5.3.Solid oxide fuel cells
5.3.1.Overview of solid oxide fuel cells
5.3.2.SOFCs working principle
5.3.3.SOFC assembly and materials
5.3.4.SOFC electrolyte
5.3.5.Anode properties
5.3.6.Cathode properties
5.3.7.Interconnect for planar SOFCs
5.3.8.Tubular SOFCs
5.3.9.Polarization losses
5.3.10.SOFC technology variations
5.3.11.SOFC advantages and disadvantages
5.3.12.SOFC technology conclusions
5.3.13.Recent SOFC research and development
5.3.14.Low temperature SOFCs
5.3.15.Kyocera's cylinder-plate fuel electrode supports
5.3.16.Power generation from unused biomass resources
5.3.17.AMON Project
5.3.18.Integrated gasification fuel cells and carbon capture
5.3.19.SOFC market players
5.3.20.Overview of key SOFC players
5.3.21.Overview of players in the SOFC market - USA
5.3.22.Overview of players in the SOFC market - Europe
5.3.23.Overview of players in the SOFC market - APAC
5.3.24.Bloom Energy overview
5.3.25.Bloom Energy technology
5.3.26.Bloom Energy example customers
5.3.27.Bloom Energy example customers (2)
5.3.28.Bloom Energy installation base
5.3.29.Bloom Energy financials
5.3.30.Bloom Energy financial analysis
5.3.31.Bloom-SK Fuel Cell
5.3.32.Ceres Power overview
5.3.33.Ceres Power technology
5.3.34.Ceres Power financials
5.3.35.Ceres Power revenue splits
5.3.36.Ceres Power & Partners
5.3.37.Ceres Power & Bosch/Weichai
5.3.38.Ceres Power & Doosan
5.3.39.Ceres Power & Delta Electronics
5.3.40.Ceres Power & Miura
5.3.41.FuelCell Energy overview
5.3.42.FuelCell Energy SOFC technology
5.3.43.Mitsubishi Power overview
5.3.44.Mitsubishi Power technology
5.3.45.Players offering residential and off-grid SOFCs
5.3.46.Redox Power
5.3.47.OxEon Energy
5.3.48.OxEon Energy continued
5.3.49.Upstart Power
5.3.50.Aris Renewable Energy
5.3.51.Osaka Gas
5.3.52.Osaka Gas Ene-Farm
5.4.Phosphoric acid fuel cells
5.4.1.Overview of phosphoric acid fuel cells (PAFCs)
5.4.2.PAFCs working principle
5.4.3.PAFC assembly and materials
5.4.4.Electrolyte and matrix
5.4.5.Cathode materials and reaction
5.4.6.Anode materials and reaction
5.4.7.Cell catalyst development - electrode alloying
5.4.8.Bipolar plates developments
5.4.9.Cell performance and lifetime
5.4.10.Alternative FC developments using phosphoric acid - HT-PEMFCs
5.4.11.PAFC advantages and disadvantages
5.4.12.PAFC technology conclusions
5.4.13.PAFC market players
5.4.14.Overview of PAFC market technologies and players
5.4.15.PAFC technology benchmarking
5.4.16.Combined heat and power
5.4.17.Doosan Fuel Cell overview
5.4.18.HyAxiom overview
5.4.19.Doosan Fuel Cell and HyAxiom technology
5.4.20.Doosan and HyAxiom off-grid EV charging
5.4.21.Doosan Fuel Cell installation base
5.4.22.Doosan Fuel Cell financials
5.4.23.Doosan Fuel Cell and the Korean Hydrogen Bidding Market
5.4.24.Doosan Fuel Cell and HyAxiom global investments
5.4.25.Fuji Electric overview
5.4.26.Fuji Electric technology
5.4.27.Fuji Electric installation base
5.4.28.Fuji Electric historical case studies
5.5.Alkaline fuel cells
5.5.1.Alkaline fuel cell technology overview
5.5.2.AFCs working principle
5.5.3.Materials and structure
5.5.4.Stack assembly
5.5.5.Electrolyte type and configurations
5.5.6.Cathode catalysts
5.5.7.Anode catalysts
5.5.8.Gas diffusion electrodes
5.5.9.Cell degradation
5.5.10.AFC advantages and disadvantages
5.5.11.AFC technology conclusions
5.5.12.Anion exchange membrane fuel cells
5.5.13.Anion exchange membrane fuel cells (AEMFCs) - emerging alternative to AFCs
5.5.14.Working principle
5.5.15.Anion exchange membranes
5.5.16.Catalysts
5.5.17.AEMFC development summary
5.5.18.AFCs vs AEMFCs
5.5.19.AFC market players
5.5.20.Overview of AFC key players
5.5.21.GenCell overview
5.5.22.GenCell technologies
5.5.23.GenCell technology specifications
5.5.24.GenCell partners and customers
5.5.25.GenCell global installation and partnerships
5.5.26.GenCell's United States market focus
5.5.27.GenCell financials
5.5.28.AFC Energy overview
5.5.29.AFC Energy technology specifications
5.5.30.AFC Energy partnerships and customers
5.5.31.AFC Energy financials
5.5.32.AFC Energy operating activity
5.5.33.Historic players - Alkaline Fuel Cell Power
5.5.34.Alternative fuels for AFCs
5.5.35.Ammonia cracking and green ammonia synthesis
5.5.36.AFC fuel conversion technologies
5.6.Molten carbonate fuel cells
5.6.1.Molten carbonate fuel cell (MCFC) technology overview
5.6.2.Operating principles
5.6.3.Electrolyte
5.6.4.Cathode materials
5.6.5.Anode materials
5.6.6.Matrix materials
5.6.7.Material component summary
5.6.8.MCFC advantages and disadvantages
5.6.9.MCFC technology conclusions
5.6.10.MCFCs for carbon capture, utilization and storage (CCUS)
5.6.11.MCFC market players
5.6.12.FuelCell Energy Overview
5.6.13.FuelCell Energy technology specifications
5.6.14.FuelCell Energy - Tri-generation system
5.6.15.Carbon capture technology & FuelCell Energy
5.6.16.FuelCell Energy financials
5.6.17.FuelCell Energy revenue splits
5.6.18.FuelCell Energy and ExxonMobil (EMTEC) partnership
5.6.19.FuelCell Energy and Drax Group
5.6.20.FuelCell Energy in the South Korean market
5.6.21.Emerging player - EcoSpray
5.7.Direct methanol fuel cells
5.7.1.Direct methanol fuel cells overview
5.7.2.DMFCs working principle
5.7.3.Materials and structure
5.7.4.Electrolyte
5.7.5.Anode catalysts and reaction
5.7.6.Cathode catalysts
5.7.7.Operating conditions
5.7.8.Cell degradation
5.7.9.DMFC advantages and disadvantages
5.7.10.DMFC technology conclusions
5.7.11.DMFC market players
5.7.12.DMFC market landscape
5.7.13.SFC Energy overview
5.7.14.SFC Energy technology overview
5.7.15.SFC Energy - DMFC technology specifications
5.7.16.SFC Energy financials
5.7.17.SFC Energy revenue split by region
5.7.18.Ensol Systems and SFC Energy partnership
5.7.19.DMFC Corp overview
5.7.20.DMFC Corp products
5.7.21.Antig- Fuel Cell Innovation overview
5.7.22.Antig technology overview
5.7.23.Fujikura overview
6.ALTERNATIVE POWER GENERATION TECHNOLOGIES
6.1.Alternative technologies to stationary fuel cells
6.2.What is long duration energy storage?
6.3.Energy storage technology classification
6.4.Key energy storage technologies benchmarking with advantages and disadvantages
6.5.Longer duration Li-ion BESS projects on the rise
6.6.Hydrogen combustion engines overview
6.7.Hydrogen combustion engines for stationary power generation
6.8.Diesel generators overview
6.9.Global initiatives for the removal of diesel fuel and generators
6.10.Diesel generator market players
7.APPLICATIONS
7.1.1.Worldwide energy demand growth
7.1.2.Stationary fuel cell applications
7.1.3.Overview of the stationary fuel cell application market
7.1.4.Continuous power generation applications and requirements
7.1.5.Backup power generation applications and requirements
7.1.6.Peak shaving applications and requirements
7.2.Industrial
7.2.1.Overview of industrial applications
7.2.2.Industrial application considerations
7.2.3.Technology benchmarking for industrial applications
7.2.4.PEMFC industrial case studies
7.2.5.SOFC industrial case studies
7.2.6.PAFC industrial case studies
7.2.7.MCFC industrial case studies
7.2.8.Conclusions: Fuel cells for industrial power generation
7.3.Commercial
7.3.1.Overview of commercial applications
7.3.2.Commercial application technology considerations
7.3.3.Technology benchmarking for commercial applications
7.3.4.PEMFC commercial case studies
7.3.5.SOFC commercial case studies
7.3.6.PAFC commercial case studies
7.3.7.AFC small scale commercial case studies
7.3.8.Conclusions: Fuel cells for commercial power generation
7.4.Utilities
7.4.1.Overview of utilities applications
7.4.2.Utilities application considerations
7.4.3.Technology benchmarking for utilities
7.4.4.PEMFC utilities generation case studies
7.4.5.SOFC utilities case studies
7.4.6.PAFC utilities case studies
7.4.7.MCFC utilities case studies
7.4.8.AFC utilities case studies
7.4.9.Conclusions: Fuel cells for utilities power generation
7.5.Data centres & Telecommunications
7.5.1.Overview of data centres and telecommunication applications
7.5.2.Data centres power demand growth
7.5.3.Data centres and telecom application technology considerations
7.5.4.Technology benchmarking for data centres and telecommunications applications
7.5.5.PEMFC telecommunications case studies
7.5.6.PEMFC data centre case studies
7.5.7.SOFC data centre case studies
7.5.8.AFC telecommunications case studies
7.5.9.DMFC telecommunications case studies
7.5.10.DMFC telecommunications and remote monitoring case studies
7.5.11.Conclusions: Fuel cells for telecommunications and data centres
7.6.Residential
7.6.1.Overview of residential applications
7.6.2.Residential application technology considerations
7.6.3.Technology benchmarking for residential applications
7.6.4.Feed-in tariffs (FiT) and solar power incorporation
7.6.5.Comparison with residential batteries
7.6.6.Outlook for solid oxide fuel cells
7.6.7.Conclusions: Residential fuel cells
8.COMPANY PROFILES
8.1.AFC Energy
8.2.Alma Clean Power: Solid-Oxide Fuel Cells for Transport
8.3.Aris Renewable Energy
8.4.AVL: Solid Oxide Fuel Cells
8.5.Ballard Power Systems
8.6.Bloom Energy
8.7.Ceres (2024)
8.8.Ceres Power (2023)
8.9.Cummins: Solid Oxide Fuel Cells
8.10.Doosan Fuel Cell
8.11.Edge Autonomy
8.12.Elcogen
8.13.FuelCell Energy
8.14.Fuji Electric (PAFC)
8.15.GenCell Energy
8.16.Intelligent Energy
8.17.Nedstack
8.18.Osaka Gas: Solid Oxide Fuel Cell
8.19.OxEon Energy
8.20.Plug Power
8.21.PowerCell
8.22.Redox Power Systems
8.23.SFC Energy
8.24.SOLIDpower
8.25.Sunfire
8.26.Toshiba (Fuel Cell Business)
8.27.Upstart Power
 

価格および注文方法

定置型燃料電池市場 2025-2035年:技術、有力企業、予測

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
電子版_PDF(ユーザー 1-5名)
¥990,000
電子版_PDF(ユーザー 6-10名)
¥1,406,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,140,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

レポート概要

スライド 363
企業数 27
フォーキャスト 2035
発行日 Oct 2024
ISBN 9781835700655
 

コンテンツのプレビュー

pdf Document Sample pages
 
 
 
 

Subscription Enquiry