直接液冷の市場規模は2035年までに510億ドルを超える見込み

データセンターの熱管理 2025-2035年:技術、市場、機会

空冷、D2C(ダイレクト・ツー・チップ)冷却、液浸冷却、単相式、二相式、パートナーシップ、CDU(冷却水循環装置)、サプライチェーン統合についての分析、TCO(総所有コスト)分析


製品情報 概要 目次 価格 Related Content
本レポートは、データセンターで用いられる空冷、単相式・二相式の冷却板/D2C冷却、液浸冷却の他、それらに関連するCDU(冷却水循環装置)、冷却水、熱伝導材料(TIM)、ポンプについても分析しています。また、各冷却方式の長所と短所を評価し、業界大手から得た知見を基に、技術市場での採用までのロードマップをデータセンター用サーバーラックの容量別やAIなどの用途別に掲載しています。さらに、サプライチェーンのコスト分析、サプライチェーン統合の可能性を評価するとともに、企業がデータセンター冷却業界にコンポーネントを供給する際に考慮すべき重要点を概説しています。
「データセンターの熱管理 2025-2035年」が対象とする主なコンテンツ
(詳細は目次のページでご確認ください)
1. 全体概要
2. はじめに
3. 熱管理方法概要
4. 空冷
4.1 ファン
4.2 リアドア熱交換器(RDHx)、CRAHユニット、CRACユニット
4.3 チラーと冷却塔
4.4 空冷の収益予測(ドル)
5. 液冷概要
5.1 GPUとCPUのTDP予測(直接液冷に向けたタイムラインも掲載)
5.2 データセンターの電力区分別割合:20MW未満、20~43MW、43~66MW、66~89MW、89~112MW、112~135MW、135MW超
5.3 データセンター用サーバーラックのラック電力区分別割合:20kW未満、20~40kW、40~60kW、60~80kW、80~100kW、100~120kW、120~140kW、140~160kW、160kW超
6. 冷却板/D2C冷却
6.1 D2C(ダイレクト・ツー・チップ)冷却システムの数量予測(CDU、マニホールド、クイックディスコネクト、D2C用空冷コンポーネントを含む)
6.2 D2C用コンポーネントのコスト分析
6.2 D2C(ダイレクト・ツー・チップ)冷却の収益予測(ドル)
6.3 D2C(ダイレクト・ツー・チップ)冷却の利点と欠点
6.4 使用事例紹介
6.5 単相式・二相式D2Cの市場シェア予測
6.6 AI用途と非AI用途に分けて見るD2Cの市場規模予測
7. スプレー冷却
8. 液浸冷却
8.1 液浸冷却収益予測(ドル)(タンク、冷却水、CDU、配管/バルブ/監視を含む)
8.2 浸漬冷却と空冷のTCO(総所有コスト)と投資回収期間比較
9. 冷却水
9.1 比較
9.2 規制とロードマップ
10. パートナーシップと冷却ソリューションのロードマップ
10.1 冷却バリューチェーン概要
10.2 バリューチェーンのポジションが異なるプレーヤー間の提携
11. TCO(総所有コスト)分析
11.1 商用データセンター4箇所の10年間TCO分析
11.2 空冷、D2C、液浸のコスト比較(ドル/ワット)
11.3 主要コンポーネント(ファン、冷却水、冷却板、マニホールド、CDU、クイックディスコネクトなど)別データセンター冷却コスト分析
12. CDU(冷却水循環装置)
12.1 主要コンポーネント概要(ポンプ、ろ過装置、センサー、排熱再利用の可能性を含む)
12.2 排熱再利用のユースケース
13. 熱伝導材料(TIM)
13.1 TIM紹介と動向
13.2 サーバーで使用されるTIMの面積(m2)予測
14. 予測概要
15. 企業概要一覧
 
「データセンターの熱管理 2025-2035年」は以下の情報を提供します
  • データセンター冷却ソリューションの背景と技術の徹底批評
  • 冷却技術とその下位分野の歴史的背景と動向
  • 各冷却セクターの重要なイノベーションと技術の包括的概要
  • データセンター冷却業界の現在のトレンドとテーマを考察
  • TDP(熱設計電力)の動向とデータセンター冷却のバリューチェーンへの影響評価
  • 空冷技術の詳細批評(歴史的背景、進歩、大規模データセンターの展開とハイブリッド構成での役割など)
  • D2C冷却などの液冷技術の考察(単相式システムと二相式システムの比較、TDP予測曲線に基づくその採用動向など)
  • ループヒートパイプ、液浸冷却(単相式と二相式)などの先進冷却方式と、その高密度コンピューティング環境に与える影響分析
  • 冷却水の批評(種類、規制、コスト、業界標準の比較など)
  • 市場需要と技術進化に関する洞察に基づいた、CDU(冷却水循環装置)とポンプ評価
  • 熱伝導材料(TIM)を取り巻く状況の洞察(ハイパフォーマンスコンピューティングにおけるイノベーションと使用法を紹介)
  • データセンター冷却エコシステム内のプレーヤー分析(各プレーヤーのバリューチェーンと市場ポジションの詳細な批評も掲載)
  • 2022~2024年のデータセンター冷却技術の市場実績データ
  • データセンター用サーバーラックを電力密度別に分析
  • コンポーネント別主要冷却ソリューションの10年間(2025~2035年)市場規模予測。対象:空冷、D2C冷却(CDU、冷却板+ホース+パイプ+サーバー内の流体供給ネットワーク、マニホールド、クイックディスコネクト、D2C用空冷コンポーネント)、液浸冷却(液浸タンク、冷却水、配管/バルブ/監視、CDU)。予測手法も掲載。
  • AI用途と非AI用途の10年間(2025~2035年)の数量と市場規模予測
  • データセンター用途で使用されるTIMの10年間(2025~2035年)市場規模予測
 
With the increasing demand for high-performance computing in sectors like AI, cloud computing, and crypto mining, the thermal design power (TDP) of chips has risen significantly over the past 16 years. Nivida's B200 GPU has already demonstrated a TDP of 1200W. With the roadmap released by Nvidia and a recent announcement from Intel on its Falcon Shores chip to be released in 2025, it will not be long before we will see chips with TDP exceeding 1500W. This upward trend in TDP has propelled a need for more efficient thermal management systems at both the micro (server board and chip) and macro (server rack and facility) levels. In recent years, leading data center users have collaborated with various cooling solution vendors to launch innovative pilot projects and commercialize ready-to-use cooling solutions, aiming to enhance cooling performance and meet sustainability targets by adopting more efficient cooling solutions. Nvidia has offered "official" guide by adopting cold plates on their NVLink72 server rack.
 
IDTechEx's report on Thermal Management for Data Centers 2025-2035 includes a granular market forecast of data center cooling technologies segmented by data center server rack power capacity. The report analyses liquid cooling technologies (single-phase cold plate, two-phase cold plate, single-phase immersion, and two-phase immersion), cooling solution value chain, technological barriers of different cooling methods, cost analysis of players in different value chain positions, value chain consolidation potentials, and roadmap for the future cooling strategy.
 
In addition to technical analysis, the report features a comprehensive commercial landscape analysis, including the data center cooling value chain, partnerships between players across the value chain, and the competitive landscape.
 
The report delivers an in-depth volume and market size forecast for direct-to-liquid cooling, categorized by components such as CDUs, quick disconnects, manifolds, cold plate systems (including cold plates, hoses, pipes, and fluid distribution networks within servers), and air cooling components for D2C. It also offers a detailed forecast for immersion cooling, segmented by immersion tanks, immersion coolant, CDUs, and related piping, valves, and monitoring systems. Additionally, the forecast is further divided by single-phase and two-phase cooling technologies.
 
The report also provides a 10-year outlook on the use of thermal interface materials (TIMs) across data center components. Moreover, it includes a forecast of liquid cooling adoption, differentiating between AI and non-AI applications, to highlight the industries expected to present the most significant opportunities.
 
Cooling Overview
Data center cooling methods can be broadly categorized into air cooling and liquid cooling, depending on the cooling medium employed. Air cooling relies on air conditioning and/or fans, utilizing convection to dissipate heat from the servers. It has been widely adopted due to its long and successful track record. However, the low specific heat of air makes it challenging to meet the increasing cooling capacity requirements. Additionally, as data center users strive to maximize rack space utilization by densely packing servers (typically 1U servers), the air gaps between servers become narrower, which further reduces the efficiency of air cooling.
 
Liquid cooling, on the other hand, takes advantage of the higher specific heat of liquid to achieve superior cooling performance. Depending on which components the fluids contact, liquid cooling can be classified into direct-to-chip/cold plate cooling, spray cooling, and immersion cooling. Direct-to-chip cooling involves mounting a cold plate with coolant fluid directly on top of heat sources such as GPUs and chipsets, with a thermal interface material (TIM) applied in between. Cold plate cooling can achieve a partial power use effectiveness (pPUE) ranging from 1.02 to 1.20, depending on the specific configuration.
 
An emerging alternative is immersion cooling where the servers are fully submerged in coolant fluids, enabling direct contact between the heat sources and the coolant, thereby achieving the best cooling performance with the lowest pPUE of 1.01. However, its widespread adoption is still limited due to challenges such as high upfront costs (in terms of US$/Watt), maintenance, and complexities of retrofitting the server boards. Nevertheless, immersion cooling holds potential for long-term energy savings thanks to their efficient thermal dissipation, which is not only economically beneficial given the current context of energy crisis but also helps the large companies to achieve their sustainability goals in the long run.
 
IDTechEx's comparative analysis of the 10-year total cost of ownership (TCO) between D2C cooling, 1-PIC and 2-PIC immersion across four regions reveals that over the course of 10 years, D2C on average has a 13% lower TCO than 1-PIC immersion and 9.4% lower than 2-PIC immersion, subject to the assumptions listed in the report. This report also highlights strategic collaborations and pilot projects between data center end-users, server OEMs, and immersion cooling vendors, as well as other barriers hindering the widespread adoption of immersion cooling. Market adoption (hardware units) and revenue forecasts are provided for air, cold-plate, and immersion cooling through to 2035.
 
Liquid cooling can also be classified into single-phase and two-phase cooling. Two-phase cooling generally exhibits greater effectiveness, but it also presents challenges such as regulations regarding two-phase immersion cooling fluids based on perfluoroalkyl and polyfluoroalkyl substances (PFAS), mechanical strength requirements for fluid containers to withstand increased pressure during phase changes, fluid loss due to vaporization, and high maintenance complexities and costs. The fundamental operating principles of single- and two-phase cooling is different where single-phase cooling relies on the dissipating the heat through convection whereas two-phase cooling primarily relies on dissipating the heat through the latent heat during the phase change. This report provides an analysis of different liquid cooling vendors, coolant fluid suppliers, and data center end-users, offering insights into the opportunities and threats associated with single-phase and two-phase direct-to-chip/cold plate and immersion cooling.
 
 
Benchmarking analysis of cooling solutions for data centers. Source: IDTechEx's Thermal Management for Data Centers 2025-2035
 
IDTechEx anticipates rapid growth in the adoption of liquid cooling, driven by factors such as the increasing power capacity of data centers, the rise of hyperscale data centers, the availability of ready-to-use liquid cooling solutions, high flexibility and ability to retrofit, and the market trends driven by large players such as Nvidia. Specifically, cold plate cooling is expected to experience the largest growth due to its cost effectiveness and compatibility with existing air-cooled data centers, eliminating the need for extensive retrofitting to accommodate immersion cooling solutions.
 
In line with these projections, this report offers a detailed 10-year revenue forecast for hardware related to liquid cooling in data centers segmented AI and non-AI applications. Within non-AI applications, IDTechEx also splits the forecasts of cold plate cooling by server rack power.
 
Market Opportunities
With greater adoption of liquid cooling, new opportunities are emerging, leading to strengthened collaborations among companies involved in the data center cooling supply chain. Component suppliers such as coolant distribution units (CDUs) vendors, pump vendors, and coolant fluid suppliers are expected to benefit from the increased adoption of liquid cooling. CDUs and pumps are critical components for controlling the flow rate in liquid cooling systems. Factors such as pressure drop need to be carefully considered. This report introduces various commercial in-rack and in-row CDUs, accompanied by a comprehensive comparison of coolant fluids based on their dynamic viscosity, density, specific heat, thermal conductivity, as well as required pipe length and pipe diameter. One of the emerging trends in vertical integration is seen in the data center cooling value chain, which is intricate and extensive. Although many liquid cooling solution suppliers advocate increased collaboration across the value chain, the current landscape remains fragmented, requiring extensive work from system integrations to integrate every component together into a data center. IDTechEx has identified potential opportunities for market consolidation, with server OEMs beginning to offer comprehensive rack-level cooling solutions. These solutions encompass various components, including cold plates on servers, server racks, and essential parts such as manifolds, CDUs, and QDs.
 
Key Aspects
This report delivers essential market intelligence about the data center cooling sector and the 6 associated cooling technologies covered, including air cooling, single-phase direct-to-chip cooling, two-phase direct-to-chip cooling, spray cooling, single-phase immersion, and two-phase immersion. More details include:
 
  • An in-depth review of the context and technology behind data center cooling solutions
 
  • Historical background and development of the cooling technologies and their subfields
 
  • Comprehensive overview of significant innovations and technologies within each cooling sector
 
  • Examination of current trends and themes within the data center cooling industry
 
  • Assessment of thermal design power trend and their impacts on the data center cooling value chain.
 
  • Detailed review of air cooling technology, including historical context, advancements, and its role within large-scale data center deployments and hybrid set-ups.
 
  • Examination of liquid cooling technologies such as direct-to-chip cooling, comparing single-phase and two-phase systems, and their adoption trends based on the TDP projection curve.
 
  • Analysis of advanced cooling methods like loop heat pipes, immersion cooling (single-phase and two-phase), and their impact on high-density computing environments.
 
  • Review of coolants, including comparison of types, regulations, costs, and industry standards
 
  • Evaluation of Coolant Distribution Units (CDUs) and pumps, with insights into market demand and technological evolution.
 
  • Insights into the thermal interface materials (TIMs) landscape, covering innovations and usage in high-performance computing.
 
  • Analysis of players within the data center cooling ecosystem, with detailed reviews of each player's value chain and market positions.
 
  • Historical market data for data center cooling technologies from 2022-2024.
 
  • Data center server rack analysis split by power density.
 
  • 10-year market size forecasts (2025-2035) for key cooling solutions split by component, including air cooling, direct-to-chip cooling (CDU, cold plates+hoses+pipes+fluid distribution network inside servers, manifolds, quick disconnects, and air cooling components for D2C), and immersion cooling (immersion tanks, coolant, piping/valves/monitoring, and CDUs), including forecast methodologies.
 
  • 10-year volume and market size (2025-2035) forecast by AI and non-AI applications.
 
  • 10-year market size forecast for TIMs used in data center applications (2025-2035).
Report MetricsDetails
Historic Data2022 - 2024
CAGRThe annual data center direct-to-chip cooling market will exceed US$50 billion by 2035.
Forecast Period2025 - 2035
Forecast UnitsUS$, unit
Regions CoveredWorldwide
Segments CoveredHyperscale Data Centers, Air Cooling (Fan Walls, Rear Door Heat Exchanger, Cooling Tower, and Chiller), Single-Phase and Two-Phase Direct-to-Chip/Cold Plate Cooling, Single-Phase Immersion, Two-Phase Immersion, Coolant, Heat Reuse, Coolant Distribution Units (CDUs), Thermal Interface Materials (TIMs), Data Center Cooling Value Chain Analysis, Total Cost of Ownership Analysis, Data Center Cooling Cost Analysis by Component.
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Historic Data of TDP - GPU
1.2.TDP Trend: Historic Data and Forecast Data - CPU
1.3.Cooling Methods Overview
1.4.Different Cooling on Chip Level
1.5.Yearly Revenue Forecast By Cooling Method: 2022-2035
1.6.Summary of Yearly Revenue Forecast for Liquid Cooling: 2022-2035
1.7.Immersion Cooling Revenue Forecast: 2022 - 2035
1.8.Cooling Technology Comparison
1.9.Air Cooling
1.10.Liquid Cooling - Direct-to-Chip/Cold Plate and Immersion
1.11.Liquid Cooling - Single-Phase and Two-Phase
1.12.Yearly Cold Plate Number Forecast: 2022 - 2035
1.13.Immersion Tank Yearly Number Forecast: 2022 - 2035
1.14.Coolant Comparison
1.15.Coolant Comparison - PFAS Regulations
1.16.Coolant Distribution Units (CDU)
1.17.Heat Transfer - Thermal Interface Materials (TIMs) (1)
1.18.Heat Transfer - Thermal Interface Materials (TIMs) (2)
1.19.Yearly TIM Area Forecast by Data Center Component: 2021-2035
1.20.Cooling cost analysis
1.21.OPEX and TCO Estimation
1.22.Pricing of Direct-to-Chip, Immersion and Air Cooling - US$/Watt
2.INTRODUCTION
2.1.Overview
2.1.1.Data Center Demographics
2.1.2.Data Center Equipment - Top Level Overview
2.1.3.Data Center Server Rack and Server Structure
2.1.4.Power Use Effectiveness
2.1.5.Data Center Switch Topology - Three Layer and Spine-Leaf Architecture
2.1.6.K-ary Fat Tree Topology
2.2.Data Center Thermal Management Overview
2.2.1.Thermal Management Needs for Data Centers
2.2.2.Significant Consequences for Data Center Downtime
2.2.3.Data Center Location Choice
2.2.4.Increasing TDP Drives More Efficient Thermal Management
2.2.5.Overview of Thermal Management Methods for Data Centers
2.2.6.Thermal Management Categorization
2.3.Thermal Design Power (TDP) Evolution
2.3.1.Historic Data of TDP - GPU
2.3.2.TDP Trend: Historic Data and Forecast Data - CPU
3.THERMAL MANAGEMENT METHODS
3.1.Introduction to Data Center Cooling Classification
3.2.Cooling Technology Comparison (1)
3.3.Cooling Technology Comparison (2)
3.4.Air Cooling
3.5.Hybrid Liquid-to-Air Cooling
3.6.Hybrid Liquid-to-Liquid Cooling
3.7.Hybrid Liquid-to-Refrigerant Cooling
3.8.Hybrid Refrigerant-to-Refrigerant Cooling
3.9.Server Board Number Forecast: 2025 - 2035
4.AIR COOLING
4.1.Overview
4.1.1.Introduction to Air Cooling (1)
4.1.2.Introduction to Air Cooling (2)
4.1.3.Benefits and Drawbacks of Air-Cooling Methods
4.1.4.Use Case: Row-Level Cooling Liebert® CRV CRD25
4.1.5.Overview: RDHx
4.1.6.Hybrid Air-to-Liquid Cooling - nVent
4.1.7.Cooling Tower - Adiabatic Cooling
4.1.8.Balance Between Water Use and Power Use - Case by Case in Practice
4.1.9.Use Case: Jaeggi - Adiabatic and Hybrid Dry Coolers
4.1.10.Trend for Air Cooling in Data Centers
4.2.Air Cooling Forecasts
4.2.1.Percentage of Air-Cooled Racks
4.2.2.TCO Comparison
4.2.3.Yearly Data Center Air Cooling Revenue Forecast: 2016-2033
5.LIQUID COOLING OVERVIEW
5.1.Liquid Cooling and Immersion Cooling
5.2.Comparison of Liquid Cooling Technologies (1)
5.3.Comparison of Liquid Cooling Technologies (2)
5.4.Liquid Cooling - Power Limitation of Different Cooling on Rack Level
5.5.Different Cooling on Chip Level
5.6.Data Center By Power
5.7.Liquid-Cooled Data Center Server Rack by Power
6.COLD PLATES
6.1.Overview
6.1.1.Cold Plate/Direct to Chip Cooling - Standalone Cold Plate
6.1.2.Liquid Cooling Cold Plates
6.1.3.Cold Plate/Direct to Chip Cooling in Server Boards
6.1.4.Benefits and Drawbacks of Cold Plate Cooling
6.1.5.Cold Plate Requirements
6.1.6.Considerations for Cold Plate Design (1)
6.1.7.Considerations for Cold Plate Design (2)
6.1.8.Thermal Cost Analysis of Cold Plate System - (1)
6.1.9.Thermal Cost Analysis of Cold Plate System - (2)
6.1.10.Liquid Cooling Technology Definitions (1)
6.1.11.Liquid Cooling Technology Definitions (2)
6.2.Single-Phase Cold Plate
6.2.1.Single-Phase Cold Plate
6.2.2.Single-Phase Cold Plate Considerations
6.2.3.IEI Integration Corp
6.2.4.Why Single-Phase Cold Plate Might Dominate
6.3.Two-Phase Cold Plate
6.3.1.Wieland Group - Two-Phase Evaporator/Cold Plate
6.3.2.Passive Cold Plate Cooling - Frigel & Neurok Thermocon
6.3.3.Examples: Direct-to-Chip Cooling
6.3.4.Tyson - Passive Two-Phase Cooling
6.3.5.Passive Loop Heat Pipes (LHP)
6.3.6.Use Case: Calyos
6.3.7.Direct Water-Cooled Server - ABB
6.4.Cold Plate Forecast
6.4.1.Yearly Number of Cold Plate for AI and Non-AI Forecast: 2022 - 2035
6.4.2.Yearly Number of Single- and Two-Phase Cold Plates: 2022 - 2035
6.4.3.Market Share Forecast of Single- and Two-Phase Cold Plate: 2022 - 2035
6.4.4.Yearly Number of Cold Plate For Non-AI Forecast: 2025 - 2035
6.4.5.Total Cost Analysis of Cold Plate (Cold plate + QD + Manifold, Hoses, etc.)
6.4.6.GPU and CPU Cold Plate System Forecast: 2025-2035
6.4.7.Cost of Cold Plate System Forecast: 2022 - 2035
6.4.8.Yearly Revenue Forecast Summary of Cold Plate: 2022 - 2035
6.4.9.Yearly Cold Plate Revenue Forecast: 2022 - 2035
6.4.10.Yearly Revenue of Cold Plate of CPU and GPU: 2025-2035
6.5.Summary of Cold Plate Cooling
6.5.1.Overview: Cold Plate
6.5.2.Cold Plate Structure
6.5.3.Benefits and Challenges of Cold Plate Cooling (1)
6.5.4.Benefits and Challenges of Cold Plate Cooling (2)
6.5.5.Limitations of Cold Plate Cooling
6.5.6.SWOT of Cold Plate/Direct-to-Chip Cooling
6.5.7.Summary of Cold Plate Cooling - Considerations
6.5.8.Thermal Cost Analysis of Cold Plate System - (1)
6.5.9.Thermal Cost Analysis of Cold Plate System - (2)
7.SPRAY COOLING
7.1.Introduction to Spray Cooling
7.2.Advanced Liquid Cooling Technologies (ALCT) - Spray Cooling
8.IMMERSION COOLING
8.1.Overview
8.1.1.Single-Phase and Two-Phase Immersion - Overview (1)
8.1.2.Single-Phase Immersion Cooling (2)
8.1.3.SWOT: Single-Phase Immersion Cooling
8.1.4.Overview: Two-Phase Immersion Cooling
8.1.5.SWOT: Two-Phase Immersion Cooling
8.2.Single-Phase
8.2.1.Use Case: Iceotope - Direct-to-Chip + Immersion
8.2.2.Use Case: LiquidCool Solutions - (1)
8.2.3.Use Case: LiquidCool Solutions - (2)
8.2.4.Use Case: Green Revolution Cooling (GRC)
8.2.5.nVent/Iceotope and LiquidCool Solutions - Limited Differentiation
8.2.6.DCX Liquid Cooling - Immersion
8.3.Two-Phase
8.3.1.Wieland - Two-Phase Immersion Cooling
8.3.2.Two-Phase Cooling - Phase Out Before Starting to Take Off?
8.3.3.Roadmap of Two-Phase Immersion Cooling
8.3.4.Roadmap of Single-Phase Immersion Cooling
8.3.5.Examples: Immersion
8.3.6.Use-Case: Iceotope and Meta
8.3.7.Use-Case: Microsoft
8.3.8.Use-Case: Microsoft Halted its Underwater Data Centers
8.3.9.Asperitas
8.3.10.Gigabyte
8.3.11.Summary (1) - Benefits of Immersion Cooling
8.3.12.Summary (2) - Challenges of Immersion Cooling
8.3.13.Cost Saving Comparison - Immersion and Air Cooling
8.3.14.Comparison of Liquid Cooling Methods
8.3.15.Pricing of Direct-to-Chip, Immersion and Air Cooling - US$/Watt
8.3.16.Immersion Tank Yearly Number Forecast: 2022 - 2035
8.3.17.Immersion Cooling Revenue Forecast: 2022 - 2035
9.COOLANT
9.1.Introduction to Cooling Fluid
9.2.Coolant Fluid Comparison - Operating Temperature
9.3.Trend - Decline in Fluorinated Chemicals?
9.4.Immersion Coolant Liquid Suppliers
9.5.Engineered Fluids - Why Better Than Oils
9.6.What is the Roadmap for Coolant in Two-Phase Cooling?
9.7.Honeywell R-1233zd and Chemours' Opteon SF33
9.8.Demand for Immersion Coolant Standardization - FOMs
9.9.Figures of Merit (FOM)
9.10.Force Convection FOM for Single-Phase Immersion
9.11.FOM3 - Viscosity for Pressure Drop
9.12.Density
9.13.Signal Integrity Evaluations
9.14.Global Warming Potential (GWP)
9.15.Material Compatibility Guide - Coolant and TIMs/Adhesives
9.16.Material Compatibility Guide - Seals/Gaskets/O-Rings and Coolant
9.17.Material Compatibility Guide - Plastics and Coolant
9.18.Material Compatibility Guide - Pipe & Fitting and Coolant
9.19.Material Compatibility Guide - Metal and Coolant
9.20.Yearly Coolant Volume for Immersion: 2022-2035
10.PARTNERSHIPS
10.1.Data Center Cooling Value Chain
10.2.Cooling Solution Partner
10.3.Intel and Submer - Heat Reuse and Immersion Cooling
10.4.Iceotope, Intel and HPE
10.5.Iceotope, Schneider Electric, and Avnet - Liquid Cooled Data Center
10.6.GRC and Intel
10.7.GRC and Dell - Edge Deployment
10.8.Iceotope and Meta
10.9.Development of New Immersion Coolant - ElectroSafe
10.10.Partnership - how does the value chain look like?
10.11.Roadmap of Liquid Cooling Adoption
10.12.Data Center Cooling Solution - Roadmap
11.TOTAL COST OF OWNERSHIP ANALYSIS
11.1.Cooling cost analysis
11.2.OPEX and TCO Estimation
11.3.TCO Comparison - Payback Time
11.4.Pricing of Direct-to-Chip, Immersion and Air Cooling - US$/Watt
11.5.TCO Analysis of D2C with Chiller
11.6.TCO Analysis of 1-PIC with Chiller
11.7.TCO Analysis - 10 Year
11.8.Cooling System Cost - Direct to Chip Cooling Hardware
11.9.Immersion Cooling Cost - Componentry and Facility Level
11.10.Cooling System Cost - CDUs Hardware
11.11.Cost - Fluids
11.12.Cooling System Cost - Thermal Interface Materials
12.COOLANT DISTRIBUTION UNITS (CDUS)
12.1.Overview
12.1.1.Overview - (1)
12.1.2.Overview - (2)
12.1.3.Redundancy - (1)
12.1.4.Redundancy - (2)
12.1.5.Liquid-to-Liquid (also known as L2L) CDUs
12.1.6.Liquid-to-Air CDUs
12.1.7.Summary of Liquid-to-Liquid and Liquid-to-Air Cooling
12.1.8.Vertiv - Liebert® XDU 60 Heat Exchanger and CDU - (1)
12.1.9.Vertiv - Liebert® XDU Heat Exchanger and CDU - (2)
12.1.10.CDU - nVent
12.1.11.CDU - CoolIT - Teardown (1)
12.1.12.CDU - CoolIT - Teardown (2)
12.1.13.CDU - CoolIT - Teardown (3)
12.1.14.CDU Teardown - Motivair
12.1.15.CDU - Cooling Capacity Evaluation
12.1.16.Revenue Forecast of CDU: 2022 - 2035
12.2.Main Pump
12.2.1.Overview
12.2.2.Redundancy Analysis
12.3.Filtering
12.3.1.Overview
12.3.2.Filters - Schematic Drawing
12.3.3.Filters
12.4.Sensors
12.4.1.Overview of Sensors
12.4.2.Leakage Detection Sensors - Overview
12.4.3.Leakage Detection Sensors on Server Nodes (1)
12.4.4.Leakage Detection Sensors on Server Nodes (2)
12.5.Heat Reuse
12.5.1.Overview of the Heat Reuse in Data Center Cooling
12.5.2.Use Case: Amazon Data Center Heat Reuse
12.5.3.Facebook (Now Meta) Data Center Heat Reuse
12.5.4.Tencent - Tianjin Data Center Heat For Municipal Heating
12.5.5.Return on Investment of Heat Reuse
12.5.6.More Examples of Heat Reuse
13.HEAT TRANSFER - THERMAL INTERFACE MATERIALS (TIMS)
13.1.Thermal Interface Materials in Data Centers
13.2.Common Types of TIMs in Data Centers - Line Card Level
13.3.TIMs in Data Centers - Line Card Level - Transceivers
13.4.TIMs in Server Boards
13.5.Server Board Layout
13.6.TIMs for Data Center - Server Boards, Switches and Routers
13.7.Data Center Switch Players
13.8.How TIMs are Used in Data Center Switches - FS N8560-32C 32x 100GbE Switch
13.9.WS-SUP720 Supervisor 720 Module
13.10.Ubiquiti UniFi USW-Leaf Switch
13.11.FS S5850-48S6Q 48x 10GbE and 6x 40GbE Switch
13.12.Cisco Nexus 7700 Supervisor 2E module
13.13.TIMs for Power Supply Converters (1): AC-DC and DC-DC
13.14.Data Center Power Supply System
13.15.TIMs for Data Center Power Supplies (2)
13.16.TIMs for Data Center Power Supplies (3)
13.17.TIMs in Data Center Power Supplies (4)
13.18.How TIMs are Used in Data Center Power Supplies (5)
13.19.How TIMs are Used in data center power supply (6)
13.20.TIMs for Data Centers - Power Supply Converters
13.21.Differences Between TIM Forms - (1)
13.22.Differences Between TIM Forms - (2)
13.23.Novel material - Laminar Metal Form with High Softness (1)
13.24.Novel material - Laminar Metal Form with High Softness (2)
13.25.TIM Trends in Data Centers
13.26.Estimating the TIM Areas in Server Boards
13.27.Servers Number Forecast: 2021-2035
13.28.TIM Requirement in Immersion Cooling
13.29.Common TIMs for Immersion Cooling
13.30.Total TIM Area in Server Boards Forecast (m2): 2022-2035
13.31.Area of TIM per Switch
13.32.TIM Area for Leaf and Spine Switch
13.33.Yearly TIM Area for Leaf and Spine Switch Forecast: 2025-2035
13.34.TIM Consumption in Data Center Power Supplies
13.35.Yearly TIM Area for Power Supply Forecast (m2): 2025-2035
13.36.Forecast summary - Yearly TIM Area (m2) Forecast for Different Data Center Components: 2025-2035
14.FORECAST SUMMARY
14.1.Yearly Revenue Forecast By Cooling Method: 2022-2035
14.2.Summary of Yearly Revenue Forecast for Liquid Cooling: 2022-2035
14.3.Summary of Yearly Volume Forecast for Liquid Cooling: 2022-2035
14.4.Yearly Revenue Forecast Summary of Cold Plate: 2022 - 2035
15.COMPANY PROFILES
15.1.Accelsius — Two-Phase Direct-to-Chip Cooling
15.2.Amazon AWS Data Center
15.3.Arieca (2024)
15.4.Arieca (2020)
15.5.Asperitas Immersed Computing
15.6.Calyos: Data Center Applications
15.7.Engineered Fluids
15.8.Green Revolution Cooling (GRC)
15.9.Henkel: microTIM and data centers
15.10.LiquidCool Solutions — Chassis-Based Immersion Cooling
15.11.LiSAT
15.12.Nano-Join
15.13.NeoFan
15.14.Neurok Thermocon Inc
15.15.Parker Lord: Dispensable Gap Fillers
15.16.Resonac Holdings
15.17.Sumitomo Chemical Co., Ltd
15.18.Taybo (Shanghai) Environmental Technology Co., Ltd
15.19.Tyson
15.20.Vertiv Holdings - Data Center Liquid Cooling
15.21.ZutaCore
 

価格および注文方法

データセンターの熱管理 2025-2035年:技術、市場、機会

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
電子版_PDF(ユーザー 1-5名)
¥990,000
電子版_PDF(ユーザー 6-10名)
¥1,406,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,140,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

レポート概要

スライド 294
企業数 21
フォーキャスト 2035
発行日 Sep 2024
ISBN 9781835700648
 

コンテンツのプレビュー

pdf Document EOY Webinar Slides
pdf Document Webinar Slides
pdf Document Sample pages
 
 
 
 

Subscription Enquiry