인공지능(AI) 기반 배터리 기술동향, 혁신, 기회요인 및 시장전망 2025-2035

기술 벤치마킹 및 데이터 기반 시장예측을 포함하여 배터리 수명주기 전반에 걸친 인공지능의 5가지 응용분야에 대한 시장전망 및 20개 기업의 프로필을 포괄하는 보고서

모두 보기 설명 목차, 표 및 그림 목록 자주 묻는 질문 가격 Related Content
배터리 산업에서 인공지능의 5가지 응용분야에 대한 통찰을 제공하는 이 보고서에서는 기술, 공급망, 주요업체 혁신에 대한 논의를 포함하여 배터리 개발, 제조 및 사용에 있어 양적, 질적 변화에 대한 예측 및 잠재력을 평가하고 향후 10년간 시장예측 및 전망을 제공합니다.
이 보고서에서는 배터리 산업에서 활용되는 인공지능(AI) 에 대한 시장분석과 기술평가를 포함하여 다음과 같은 주요 정보를 제공합니다.
 
다양한 응용분야에서 활용되는 기술들
  • 머신러닝과 인공지능 개요
  • 기존 기법과 그 한계점
  • AI를 통한 가치창출 방법 논의
  • AI 활용사례에 대한 벤치마킹
 
각 응용분야에 대한 시장 평가
  • 각 응용분야 (소재 혁신, 셀 테스트, 제조, 사용중 진단, 배터리 재사용 수평 평가) 에 대한 정량적, 정성적 시장 분석
  • 에너지밀도 문제와 탄소중립의 필요성을 포함한 배터리 산업이 직면한 문제 검토
  • 기존 기술과 비교하여 AI의 이론적 및 실제적 가치제안 검토
  • 배터리 산업의 다양한 플레이어를 위한 비즈니스 모델과 수익창출 방법 논의
 
시장과 플레이어 분석
  • 주요 플레이어의 기술 및 비즈니스 모델 검토
  • 유럽, 북미, 동아시아에서의 성장동력 분석
  • 세가지 부분에 대한 시장예측 및 기타 부분에 대한 정성적 예측
 
이 보고서에서 다루는 주요 내용/목차는 아래와 같습니다.
 
1. 핵심 요약
2. 머신러닝 접근방식
3. 소재 혁신
4. 셀 테스트 및 모델링
5. 셀 조립 및 제조
6. 배터리 관리시스템(BMS) 분석
7. 재활용 수명평가
8. 시장전망
9. 기업 프로필
 
This report provides key insights into five different application areas for artificial intelligence in the battery industry, including discussion of technologies, supply-chain disruption and player innovations. Market forecasts cover the next decade with both quantitative and qualitative analysis. It is the most comprehensive overview for machine learning applications in the battery industry, and reveals the potential for significant disruption and acceleration of battery development, manufacturing and usage.
 
AI growth drivers
The need for net-zero has placed increasing pressure for electrification world-wide, with battery demand skyrocketing as a result. As the electric vehicle (EV) and battery energy storage system (BESS) industries grow, requirements for the batteries that power them become more demanding. Energy density is the most important factor, but cost and critical material proportions are also a major consideration. Faster battery development is needed to enable suitable batteries, as well as allow for more efficient management, manufacturing and recycling methods. Artificial intelligence (AI) will be a crucial part of the solution.
 
 
Visualization of AI usage throughout the battery lifecycle. Source: IDTechEx
 
In Europe, the desire for better sustainability and safety for large battery deployments has already led to regulatory support, including the planned Battery Passport initiative, whereby manufacturers and end-users will be required to track cell data from production to end-of-life. This has already resulted in growth of AI battery analytics, for both diagnostics and second-life assessment.
 
Meanwhile, for North America, the need for faster cell development and materials discovery will lead to uptake of materials informatics platforms and AI-assisted cell testing methods, while in East Asia, manufacturing- and development-related applications will fuel demand for AI-assisted battery technology. In the report, IDTechEx discusses the details of AI usage throughout the battery industry and across these three regions.
 
Emerging markets analyzed through the lens of experience
IDTechEx has provided the most comprehensive overview of AI technologies used throughout the battery life-cycle and supply chain, providing an overarching view of machine-learning methods generally as well as trends and growth drivers.
 
IDTechEx has gathered expertise in many sectors of the battery industry, through analysis of emerging and incumbent technologies, as well as in the two major application areas for AI in batteries: electric vehicles (EVs) and energy storage systems (ESS). As such, it is well positioned to provide critical analysis on disruptions to the battery supply chain, as well as discuss the maturity and value provided by different AI use-cases.
 
An overview of content
The report provides market analysis and technology assessment for artificial intelligence (AI) employed throughout the battery industry, looking at five distinct application areas. This includes:
A review of technologies and techniques used in different application areas:
  • Overview of machine learning and artificial intelligence
  • Evaluation of incumbent techniques and their disadvantages
  • Discussion of how value can be generated through use of AI
  • Benchmarking of AI use-cases
 
Market assessment for each application area:
  • Mix of quantitative and qualitative analysis of markets for each application area (materials discovery, cell testing, manufacturing, in-life diagnostics and second-life assessment).
  • Review of the problems facing the battery industry, including energy-density challenges and the need for net zero
  • Examination of theoretical and practical value propositions for AI, compared with the incumbent
  • Discussion of business models and revenue streams for different players in the battery industry
 
Market and player analysis throughout:
  • Review of player technology and business models
  • Analysis of growth drivers, especially in Europe, North America and East Asia
  • Market forecasts over three sectors and qualitative predictions for the rest, with a discussion of methodology and scope for each.
Report MetricsDetails
Forecast Period2025 - 2035
Forecast UnitsGlobal capacity (GWh), Market value (US$ millions)
Regions CoveredWorldwide
Segments CoveredMaterials informatics for batteries, AI-assisted cell testing, smart battery manufacturing, cloud-based diagnostics, on-edge diagnostics, second-life assessment
IDTechEx의 분석가 액세스
모든 보고서 구입에는 전문가 분석가와의 최대 30분의 전화통화 시간이 포함되어, 보고서의 주요 결과를 귀하가 제시하는 비즈니스 문제에 연결하도록 돕습니다. 이 전화통화는 보고서를 구매한 후 3개월 이내에 사용해야합니다.
추가 정보
이 보고서에 대해 궁금한 점이 있으시면 언제든지 research@IDTechEx.com으로 보고서 팀에 문의하거나, 영업 관리자에게 문의하십시오

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
1.EXECUTIVE SUMMARY
1.1.The scope of this report
1.2.Who should read this report?
1.3.Research methodology
1.4.Clarifying terms: machine learning vs artificial intelligence
1.5.Inefficiencies of overuse
1.6.Under- and over-fitting
1.7.Challenges facing the rechargeable battery industry
1.8.How AI can be applied throughout the battery lifecycle
1.9.AI disruptions to the battery supply chain
1.10.Use-case benchmarking
1.11.Use-case maturity comparison
1.12.AI in batteries for EVs
1.13.AI in batteries for BESS
1.14.Interest by region
1.15.Scope of forecasts
1.16.Methodologies
1.17.Diagnostics by capacity served
1.18.Diagnostics by market value
1.19.On-edge AI: diagnostics
1.20.On-edge AI: performance enhancement
1.21.Cell testing by market value
1.22.Second-life assessment by market value
1.23.AI will see significant usage throughout the battery industry
2.MACHINE LEARNING APPROACHES: AN OVERVIEW
2.1.An introduction to AI - shifting goalposts
2.2.Machine learning as a subset of artificial intelligence
2.3.Machine learning approaches
2.4.The importance of data - quality and dimensionality
2.5.Standardizing data structures
2.6.Supervised learning
2.7.Unsupervised learning
2.8.Problem classes in supervised and unsupervised learning
2.9.Reinforcement learning
2.10.Semi-supervised and active learning
2.11.The ɛ parameter: exploitation vs. exploration
2.12.Neural networks - an introduction
2.13.An artificial neuron in the training process
2.14.Types of neural network
2.15.Support vector machines
2.16.Decision tree methods
2.17.k-nearest neighbor (kNN)
2.18.k-means clustering
2.19.Principal component analysis
3.MATERIAL DISCOVERY
3.1.Overview
3.1.1.Material discovery in batteries - the attraction of AI
3.1.2.Traditional material discovery and DFT
3.1.3.An introduction to Materials Informatics
3.1.4.Property prediction and material grouping
3.1.5.Datasets and descriptors
3.1.6.The golden grail - inverting the process
3.1.7.Informed selection vs. novel material formulation
3.1.8.Virtual screening
3.1.9.De novo design
3.1.10.Integration of LLM interface
3.1.11.Electrodes
3.1.12.Electrolytes
3.1.13.Problem and algorithm classes
3.2.Players in materials informatics for batteries
3.2.1.BIG-MAP
3.2.2.Microsoft Quantum - Azure Open AI
3.2.3.Umicore
3.2.4.Wildcat Discovery Technologies
3.2.5.Schrödinger - an overview
3.2.6.Schrödinger technical details
3.2.7.Eonix Energy
3.2.8.Citrine Informatics
3.2.9.Morrow Batteries
3.2.10.Chemix
3.2.11.Aionics
3.2.12.SES AI
3.2.13.SES AI batteries
3.3.Business analysis for AI in battery material discovery
3.3.1.Business models/partnerships
3.3.2.Existing client-supplier relationships
3.3.3.Differentiation
3.3.4.Challenges
3.3.5.Materials informatics will see increasing use in the battery industry over the next decade
4.CELL TESTING AND MODELLING
4.1.Overview
4.1.1.Traditional cell testing - shortcomings and challenges
4.1.2.AI for high-throughput automated testing
4.1.3.Data forms for cell modelling
4.1.4.AI for design of experiment (DoE) and anomalous data identification
4.1.5.AI for lifetime modelling
4.1.6.AI for degradation modelling
4.1.7.AI for temperature and pressure simulation
4.1.8.Data driven cell architecture optimization
4.1.9.Algorithmic approaches for different testing modes
4.2.Players in AI for cell testing
4.2.1.Stanford, MIT and Toyota Research Institute
4.2.2.StoreDot - a data-first approach
4.2.3.StoreDot's batteries
4.2.4.Safion
4.2.5.TWAICE
4.2.6.Oorja Energy
4.2.7.Addionics
4.2.8.Monolith AI
4.2.9.Speedgoat
4.2.10.DNV Energy Systems via Veracity
4.2.11.NOVONIX and SandboxAQ
4.2.12.Cell testing players summary
4.3.Business analysis for AI in cell testing
4.3.1.Typical business models
4.3.2.Differentiation
4.3.3.Challenges
4.3.4.AI is well-placed to revolutionize the cell testing process for battery development, but it will take time
5.CELL ASSEMBLY AND MANUFACTURING
5.1.Overview
5.1.1.Overview of traditional manufacturing process
5.1.2.Data quality challenges
5.1.3.Data acquisition challenges in industrial settings
5.1.4.AI for defect detection and quality control
5.1.5.AI for manufacturing process efficiency
5.1.6.Algorithmic approaches in manufacturing and cell assembly
5.1.7.Digital twins
5.1.8.FAT/SAT
5.2.Smart battery manufacturing players
5.2.1.CATL - smart factories
5.2.2.CATL - manufacturing process optimization
5.2.3.Siemens Xcelerator
5.2.4.Samsung Robotic Laboratory: ASTRAL
5.2.5.Voltaiq
5.2.6.BMW Group and University of Zagreb
5.2.7.EthonAI
5.2.8.Elisa IndustrIQ
5.2.9.Smart battery manufacturing players summary
5.3.Business analysis for smart battery manufacturing
5.3.1.Types of smart battery manufacturing players
5.3.2.Challenges
5.3.3.Smart factories could become standard for larger players, but startups will struggle to adopt
6.BATTERY MANAGEMENT SYSTEM ANALYTICS
6.1.Overview
6.1.1.Battery management in mobility and ESS - the need for accurate diagnostics
6.1.2.Management of multi-cell battery packs - a basic example
6.1.3.The purpose of a BMS
6.1.4.The data pipeline - from BMS to AI
6.1.5.Data structures and forms for diagnostics
6.1.6.Fault detection and analysis
6.1.7.SoH and SoC determination for lifetime optimization
6.1.8.The genesis of 'prescriptive' AI
6.1.9.Algorithmic approaches to battery system management
6.1.10.The Battery Passport
6.2.Players in AI for battery diagnostics and management
6.2.1.ACCURE Battery Intelligence
6.2.2.TWAICE
6.2.3.BattGenie
6.2.4.volytica diagnostics
6.2.5.On-edge AI
6.2.6.Samsung: Battery AI in S25
6.2.7.Eatron and Syntient
6.2.8.LG Energy Solution and Qualcomm
6.2.9.Tesla BMS: optimization over a journey
6.2.10.Cell diagnostics players summary
6.3.Business analysis for AI-assisted battery diagnostics and management
6.3.1.Business models
6.3.2.Differentiation
6.3.3.Challenges
6.3.4.Data-focused battery analytics will take off in Europe and see growth in the wider mobility industry
7.SECOND LIFE ASSESSMENT
7.1.Overview
7.1.1.Second-life batteries: an overview
7.1.2.Determining the second-life stream
7.1.3.Safety concerns and regulations
7.1.4.The battery passport
7.1.5.The use of AI
7.1.6.Algorithmic approaches and data inputs/outputs
7.2.Players in AI for second-life battery assessment
7.2.1.ReJoule
7.2.2.volytica diagnostics and Cling Systems
7.2.3.NOVUM
7.2.4.DellCon
7.2.5.Second-life assessment player summary
7.3.Business analysis for AI-assisted second-life assessment
7.3.1.Revenue streams - somewhat ambiguous
7.3.2.Types of players
7.3.3.Differentiation
7.3.4.Challenges
7.3.5.AI for second-life assessment in batteries will become the norm in Europe
8.FORECASTS
8.1.Diagnostics by capacity served
8.2.Diagnostics by market value
8.3.Cell testing by market value
8.4.Second-life assessment by market value
9.COMPANY PROFILES
9.1.ACCURE
9.2.Addionics
9.3.Aionics Inc.
9.4.BattGenie Inc.
9.5.Chemix
9.6.Eatron Technologies
9.7.Elisa IndustrIQ
9.8.Eonix Energy
9.9.EthonAI
9.10.Monolith AI
9.11.Oorja Energy
9.12.ReJoule
9.13.Safion GmbH
9.14.Schrödinger Update
9.15.SES AI
9.16.Silver Power Systems
9.17.StoreDot
9.18.TWAICE
9.19.Voltaiq
9.20.volytica diagnostics
9.21.Wildcat Discovery Technologies
10.APPENDIX A: DATA CENTRES DRIVING BATTERY DEMAND
10.1.A note on battery demand
 

About IDTechEx reports

What are the qualifications of the people conducting IDTechEx research?

Content produced by IDTechEx is researched and written by our technical analysts, each with a PhD or master's degree in their specialist field, and all of whom are employees. All our analysts are well-connected in their fields, intensively covering their sectors, revealing hard-to-find information you can trust.

How does IDTechEx gather data for its reports?

By directly interviewing and profiling companies across the supply chain. IDTechEx analysts interview companies by engaging directly with senior management and technology development executives across the supply chain, leading to revealing insights that may otherwise be inaccessible.
 
Further, as a global team, we travel extensively to industry events and companies to conduct in-depth, face-to-face interviews. We also engage with industry associations and follow public company filings as secondary sources. We conduct patent analysis and track regulatory changes and incentives. We consistently build on our decades-long research of emerging technologies.
 
We assess emerging technologies against existing solutions, evaluate market demand and provide data-driven forecasts based on our models. This provides a clear, unbiased outlook on the future of each technology or industry that we cover.

What is your forecast methodology?

We take into account the following information and data points where relevant to create our forecasts:
  • Historic data, based on our own databases of products, companies' sales data, information from associations, company reports and validation of our prior market figures with companies in the industry.
  • Current and announced manufacturing capacities
  • Company production targets
  • Direct input from companies as we interview them as to their growth expectations, moderated by our analysts
  • Planned or active government incentives and regulations
  • Assessment of the capabilities and price of the technology based on our benchmarking over the forecast period, versus that of competitive solutions
  • Teardown data (e.g. to assess volume of materials used)
  • From a top-down view: the total addressable market
  • Forecasts can be based on an s-curve methodology where appropriate, taking into account the above factors
  • Key assumptions and discussion of what can impact the forecast are covered in the report.

How can I be confident about the quality of work in IDTechEx reports?

Based on our technical analysts and their research methodology, for over 25 years our work has regularly received superb feedback from our global clients. Our research business has grown year-on-year.
 
Recent customer feedback includes:
"It's my first go-to platform"
- Dr. Didi Xu, Head of Foresight - Future Technologies, Freudenberg Technology Innovation
 
"Their expertise allows us to make data-driven, strategic decisions and ensures we remain aligned with the latest trends and opportunities in the market."
- Ralf Hug, Global Head of Product Management & Marketing, Marquardt

What differentiates IDTechEx reports?

Our team of in-house technical analysts immerse themselves in industries over many years, building deep expertise and engaging directly with key industry players to uncover hard-to-find insights. We appraise technologies in the landscape of competitive solutions and then assess their market demand based on voice-of-the-customer feedback, all from an impartial point of view. This approach delivers exceptional value to our customers—providing high-quality independent content while saving customers time, resources, and money.

Why should we pick IDTechEx research over AI research?

A crucial value of IDTechEx research is that it provides information, assessments and forecasts based on interviews with key people in the industry, assessed by technical experts. AI is trained only on content publicly available on the web, which may not be reliable, in depth, nor contain the latest insights based on the experience of those actively involved in a technology or industry, despite the confident prose.

How can I justify the ROI of this report?

Consider the cost of the IDTechEx report versus the time and resources required to gather the same quality of insights yourself. IDTechEx analysts have built up an extensive contact network over many years; we invest in attending key events and interviewing companies around the world; and our analysts are trained in appraising technologies and markets.
 
Each report provides an independent, expert-led technical and market appraisal, giving you access to actionable information immediately, rather than you having to spend months or years on your own market research.

Can I speak to analysts about the report content?

All report purchases include up to 30 minutes of telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

What is the difference between a report and subscription?

A subscription from IDTechEx can include more reports, access to an online information platform with continuously updated information from our analysts, and access to analysts directly.

Before purchasing, I have some questions about the report, can I speak to someone?

Please email research@idtechex.com stating your location and we will quickly respond.

About IDTechEx

Who are IDTechEx's customers?

IDTechEx has served over 35,000 customers globally. These range from large corporations to ambitious start-ups, and from Governments to research centers. Our customers use our work to make informed decisions and save time and resources.

Where is IDTechEx established?

IDTechEx was established in 1999, and is headquartered in Cambridge, UK. Since then, the company has significantly expanded and operates globally, having served customers in over 80 countries. Subsidiary companies are based in the USA, Germany and Japan.

Questions about purchasing a report

How do I pay?

In most locations reports can be purchased by credit card, or else by direct bank payment.

How and when do I receive access to IDTechEx reports?

When paying successfully by credit card, reports can be accessed immediately. For new customers, when paying by bank transfer, reports will usually be released when the payment is received. Report access will be notified by email.

How do I assign additional users to the report?

Users can be assigned in the report ordering process, or at a later time by email.

Can I speak to someone about purchasing a report?

Please email research@idtechex.com stating your location and we will quickly respond.
 

Ordering Information

인공지능(AI) 기반 배터리 기술동향, 혁신, 기회요인 및 시장전망 2025-2035

£$¥
전자 (사용자 1-5명)
£5,650.00
전자 (사용자 6-10명)
£8,050.00
전자 및 1 하드 카피 (사용자 1-5명)
£6,450.00
전자 및 1 하드 카피 (사용자 6-10명)
£8,850.00
전자 (사용자 1-5명)
€6,400.00
전자 (사용자 6-10명)
€9,100.00
전자 및 1 하드 카피 (사용자 1-5명)
€7,310.00
전자 및 1 하드 카피 (사용자 6-10명)
€10,010.00
전자 (사용자 1-5명)
$7,000.00
전자 (사용자 6-10명)
$10,000.00
전자 및 1 하드 카피 (사용자 1-5명)
$7,975.00
전자 및 1 하드 카피 (사용자 6-10명)
$10,975.00
전자 (사용자 1-5명)
元50,000.00
전자 (사용자 6-10명)
元72,000.00
전자 및 1 하드 카피 (사용자 1-5명)
元58,000.00
전자 및 1 하드 카피 (사용자 6-10명)
元80,000.00
전자 (사용자 1-5명)
¥990,000
전자 (사용자 6-10명)
¥1,406,000
전자 및 1 하드 카피 (사용자 1-5명)
¥1,140,000
전자 및 1 하드 카피 (사용자 6-10명)
¥1,556,000
전자 (사용자 1-5명)
₩9,800,000
전자 (사용자 6-10명)
₩14,000,000
전자 및 1 하드 카피 (사용자 1-5명)
₩11,200,000
전자 및 1 하드 카피 (사용자 6-10명)
₩15,400,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。
클라우드 기반 AI 배터리 진단 시장은 향후 10년간 23.4%의 연평균 성장률로 성장할 것으로 전망

보고서 통계

슬라이드 190
Companies 21
전망 2035
 

콘텐츠 미리보기

pdf Document Webinar Slides
pdf Document Sample pages
 

Customer Testimonial

quote graphic
"The resources provided by IDTechEx, such as their insightful reports and analysis, engaging webinars, and knowledgeable analysts, serve as valuable tools and information sources... Their expertise allows us to make data-driven, strategic decisions and ensures we remain aligned with the latest trends and opportunities in the market."
Global Head of Product Management and Marketing
Marquardt GmbH
 
 
 
ISBN: 9781835700761

Subscription Enquiry