전세계 자율주행 트럭 시장규모는 2044년에 1,200억 달러 규모로 성장할 것으로 전망

자율주행 트럭 기술, 주요 트랜드 및 시장 전망 2024-2044

자율주행 트럭시장에 대한 미국, 유럽, 중국, ROW 등 지역별 안전규제, 주요기업 동향, 센서, MaaS 등 기술동향 및 향후 20년간 시장 예측을 포괄하는 보고서


모두 보기 설명 목차, 표 및 그림 목록 가격 Related Content
이 보고서에서는 과거 판매 데이터를 바탕으로 자율주행 트럭 시장에 대한 기술, 규제, 주요 업체 동향에 대한 상세한 분석 및 중국, 유럽, 미국 및 기타 지역별로 향후 20년간 세분화된 시장 예측과 전망을 제공하며, 2044년까지 자율주행 트럭 시장이 1,200억 달러 규모로 성장할 것으로 예측하고 있습니다.
이 보고서는 다음과 같은 주요 정보를 제공합니다.
 
  • 자율주행 트럭 운송 산업 개요
  • 각 플레이어의 제품, 상용화 및 활동 요약
  • 자율주행 트럭 운송 차량 트렌드 및 성능 분석
  • 카메라, 열화상 카메라, 적외선, 근적외선, 중파장 적외선, 단파장 적외선, 라이다, 레이더용 광학 센서 재료로서의 퀀텀닷 등 구현 기술에 대한 개요.
  • 자율주행 트럭 판매 및 수익에 대한 20년간의 세분화된 예측
 
이 보고서에서 다루는 주요 내용/목차는 아래와 같습니다.
 
  • 자율주행 트럭: 산업 동향 및 주요 업체 분석
o 트럭 운송 산업, SAE 자동화 수준 소개
o 자율주행 규제 분석 - EU, 미국, 중국
o 주요 스타트업
o 기존 트럭 OEM 업체
o 활동하지 않는 트럭 운송 업체들
o 자율주행 트럭의 예비시스템
o 시장 준비 단계, 성숙도, 자금조달 현황
o 테스트 주행거리, 트레일, 파트너쉽, 승인 기관
o 비즈니스 모델 및 총소유비용(TCO) 분석
o 주요 동인 및 장애물
 
  • 자율주행 트럭 관련 주요 동향 및 진행 상황
o 차량 유형별, 지역별 동향
o 기업의 가치 사슬 분석
o 주목해야 할 사항
o 자율주행 트럭에 대한 SWOT 분석 및 비교
o IDTechEx 예측 타임라인
 
  • 핵심 기술: 카메라
o CMOS 구분, 작동 원리, 작동 프로세스, 스캐닝 범주 및 요구 사항
 
  • 핵심 기술: 열화상 카메라
o 열화상 카메라 SWOT
o 고해상도, 저가 적외선 센서의 과제
 
  • 핵심 기술: 적외선, 근적외선, 중파장 적외선용 광학 센서 재료로서의 퀀텀닷
o IR, NIR, SWIR 분류, 작동 원리, 작동 프로세스 및 요구 사항
 
  • 핵심 기술 LiDAR
o LiDAR 분류, 작동 원리, 작동 프로세스 및 요구 사항
o LiDAR SWOT
 
  • 핵심 기술: 레이더
o 레이더 SWOT
o 레이더 주요 구성 요소, 4D 레이더 및 이미징 레이더
 
  • 시장전망
o 대형 트럭 판매량 2023-2044년
o 자율주행 트럭 가격 2018-2044년
o 대형 트럭 매출 2023-2044년
o 자율주행 트럭의 주행거리 및 서비스 수익 2023-2044년
o 자율주행 트럭 파워트레인 2023-2044년
o 자율주행 트럭용 센서 2021-2044년
 
In recent years, the development of autonomous driving technology in the trucking industry has progressed rapidly, with numerous technology companies and truck manufacturers initiating commercial trials of autonomous heavy-duty trucks. Although full commercialization remains some distance away, the advancements in this technology offer substantial potential for addressing current industry pain points.
 
Critical Challenges in the Trucking Industry
Today, the trucking industry faces critical challenges, including high operational costs, driver management issues, and safety concerns. According to the American Trucking Association (ATA), the U.S. trucking industry faced a shortfall of more than 100,000 drivers, a number that could increase to 160,000 by 2028. The industry needs to hire one million drivers over the next decade to bridge this gap, replace retiring drivers, and meet growing shipping demands. Attracting younger generations is particularly challenging as they are reluctant to spend extended periods away from home. The aging population in Asian countries like China is expected to exacerbate labor issues in the next decade. The driver shortage has significantly increased international freight transportation costs and operational expenses for trucking companies. Autonomous heavy-duty trucks offer a solution to these challenges. Autonomous driving systems can eliminate distractions and human errors, thereby improving safety. They also enable more efficient communication with other vehicles and devices, streamlining operations and enhancing overall efficiency.
 
Industry Dynamics and Market Shifts
IDTechEx has observed significant activity in the heavy-duty long-haul trucking sector, some companies, such as Inceptio, Deepway, and Einride, have advanced from the proof-of-concept stages to securing small-scale commercial opportunities. However, the fall of several industry giants, including TuSimple, Waymo, and Embark, underscores the significant challenges faced in the autonomous trucks sector. This highlights the volatile nature of the industry and the hurdles in transitioning from innovation to large-scale commercial viability. Autonomous trucks were once considered one of the most commercially valuable and rapidly monetizable products in the autonomous driving sector, with American and European companies playing pivotal roles in their early development. However, post-pandemic global freight fluctuations and the pace of autonomous driving regulation implementation have slowed commercialization. Leading companies such as Waymo and TuSimple have either exited the autonomous trucking market or scaled down their strategic focus.
 
As regulations for autonomous driving gradually take shape to drive commercialization, Total Cost of Ownership (TCO) will become a decisive factor in determining the penetration rate of autonomous truck systems. Due to the extensive operating hours of trucks, energy consumption and labor costs are major factors influencing the TCO of autonomous trucks. Although the industry claims that autonomous truck systems can reduce costs by over 15% and eliminate labor costs, IDTechEx has conducted practical calculations to determine the TCO for different levels of autonomous systems (L0, L2, L3, L4) across various markets. Additionally, IDTechEx has compared the TCO of internal combustion engine (ICE) platforms with electric platforms.
 
Comprehensive Analysis and Future Outlook
This report explains the reasons behind the development of the autonomous trucking industry, including policy support for autonomous vehicles and trucks in Asia, the U.S., and Europe, future policy forecasts, and the movements of over a dozen key players based on IDTechEx's proprietary research, which includes 20-year forecast data.
 
IDTechEx's in-depth research into the Chinese market highlights the value of China's autonomous truck sector and the capabilities of its startups such as Inceptio, Plus.ai, Pony.ai, TrunkTech. IDTechEx also examines different drivetrain configurations for autonomous trucks and proposes correlations between energy types and vehicle performance.
 
Key Aspects
This report on Autonomous Trucks provides a detailed analysis of the players and activities within the sector. Current market is contextualized through historical data on sales back to 2019, with regional granularity across China, Europe, USA and RoW. Key challenges and opportunities are identified for the industry, with predictions regarding their commercial deployment and regional policies. The high-fidelity analysis of each market guides IDTechEx's 20-year forecasts.
 
With a forecast market value of US$120 billion predicted by 2044, this report informs and advises on this growing but competitive aspect of autonomous trucking.
 
Market Forecasts & Analysis:
  • 20-year forecasts for autonomous trucks
  • Sales by region (China, Europe, USA, RoW)
  • Unit price analysis in different countries (China, Europe, USA, RoW)
  • Revenue forecasts from vehicle sales (China, Europe, USA, RoW)
  • Adoption trends of electric powertrains (Electric, ICE)
  • Sensor usage for heavy-duty autonomous vehicles
IDTechEx의 분석가 액세스
모든 보고서 구입에는 전문가 분석가와의 최대 30분의 전화통화 시간이 포함되어, 보고서의 주요 결과를 귀하가 제시하는 비즈니스 문제에 연결하도록 돕습니다. 이 전화통화는 보고서를 구매한 후 3개월 이내에 사용해야합니다.
추가 정보
이 보고서에 대해 궁금한 점이 있으시면 언제든지 research@IDTechEx.com으로 보고서 팀에 문의하거나, 영업 관리자에게 문의하십시오

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
ASIA (Korea): +82 10 3896 6219
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Autonomous trucking - Industry Overview
1.2.Autonomous trucking - the right conditions right now
1.3.Why Automate Trucks?
1.4.Number Of Active Companies
1.5.The Sensor Trio
1.6.Different powertrains for different vehicles
1.7.Business model options for autonomous trucks
1.8.SWOT analysis for autonomous trucks
1.9.IDTechEx predicted timelines
1.10.Heavy-Duty Trucking Unit Sales 2019-2044
1.11.Heavy-Duty Trucking Revenue 2023-2044
1.12.Sensors for heavy-duty trucks 2021-2044
1.13.Access More with an IDTechEx Subscription
2.AUTONOMOUS TRUCKS: PLAYERS AND ANALYSIS
2.1.Introduction
2.1.1.Pain points in the trucking industry
2.1.2.Why Automate Trucks?
2.1.3.SAE levels of automation
2.1.4.Level-2 and Level-4 Trucking
2.1.5.Level-4 MaaS for trucking
2.1.6.Authorities for regulating autonomous driving - US
2.1.7.Authorities for regulating autonomous driving - China
2.1.8.Authorities for regulating autonomous driving - EU
2.2.Players - Start-ups
2.2.1.Startups list
2.2.2.TuSimple - Overview
2.2.3.TuSimple - Overview
2.2.4.TuSimple's Timeline
2.2.5.Perception system of TuSimple's autonomous trucks
2.2.6.Plus - Overview
2.2.7.Plus - Sensor Suite
2.2.8.Plus - Testing, Trials and Deployments
2.2.9.Inceptio - Overview
2.2.10.Inceptio - Sensor Suite
2.2.11.Inceptio - Testing
2.2.12.Inceptio - Partners and Customers
2.2.13.Einride - Overview
2.2.14.Einride: A closer look into the T-pod and E-truck
2.2.15.Einride - Partners
2.2.16.Einride - The Grids Concept
2.2.17.Einride - The Grids Concept
2.2.18.Kodiak Robotics - Overview
2.2.19.Kodiak - Sensor Suite
2.2.20.Kodiak - Trials and Business Model (1)
2.2.21.Kodiak - Trials and Business Model (2)
2.2.22.Torc Robotics - Overview
2.2.23.Torc Robotics - Sensor Suite (Gen 2)
2.2.24.Torc Robotics - Testing and Trials (1)
2.2.25.Torc Robotics - Testing and Trials (2)
2.2.26.Aurora
2.2.27.Aurora - Sensor Suite
2.2.28.Aurora - Trials, Rollout and Business Model
2.2.29.Pony.ai
2.2.30.Pony.ai - Business Model
2.2.31.DeepWay - A Baidu Founded Start-up
2.2.32.DeepWay - Sensor Suites
2.2.33.DeepWay - Trials (1)
2.2.34.DeepWay - Trials (2)
2.2.35.Terraline (Formerly Solo AVT)
2.2.36.TrunkTech
2.3.Players - Established Truck OEMs
2.3.1.Volvo Truck - Overview
2.3.2.Volvo Truck - Vera and VNL
2.3.3.Tesla
2.3.4.Daimler (1)
2.3.5.Daimler (2)
2.3.6.MAN
2.3.7.Scania
2.3.8.Hyundai
2.4.Trucking Players That Are No Longer Active
2.4.1.Embark - Overview
2.4.2.Waymo - Background
2.5.Redundancy in Autonomous Trucks
2.5.1.Redundancy in Different Systems
2.5.2.Redundant Systems
2.5.3.Daimler Trucks - Redundancy in Braking Control
2.5.4.Daimler Trucks - Steering and Communication
2.5.5.Continental - Brakes (not Heavy-Duty Specific)
2.5.6.Bosch - Brakes and Steering (not Heavy-Duty Specific)
2.5.7.TuSimple - Functional Safety
2.5.8.TuSimple - Hardware Failure Tolerance
2.5.9.TuSimple - Software Fault Tolerance
2.5.10.TuSimple - Functional Safety Overview
2.5.11.Plus.AI - Single Sensor Type Redundancy
2.5.12.Kodiak - Localisation Redundancy
2.5.13.Aurora
2.5.14.Mobileye - A Different Approach to Redundancy
2.5.15.Redundancy in Connected Technologies
2.6.Truck analysis
2.6.1.Technology Maturity Status Definitions
2.6.2.Market readiness level of L4 autonomous truck companies 2022
2.6.3.Market Readiness Level of L4 Autonomous Truck Companies 2024
2.6.4.Maturity
2.6.5.Fundings Raised and Received (1)
2.6.6.Fundings Raised and Received (2)
2.6.7.Fundings
2.6.8.Fundings
2.6.9.Testing Mileage, Trails and Partners
2.6.10.L4 Autonomous Public Road Testing Time, Location, Speed and Approval Authority
2.6.11.Company Backgrounds
2.6.12.Autonomous Trucking Activity (1)
2.6.13.Autonomous Trucking Activity (2)
2.6.14.Total Cost of Ownership Analysis - Assumption and Breakdown
2.6.15.Total Cost of Ownership Analysis
2.6.16.Total Cost of Ownership Analysis
2.6.17.Company Locations (1)
2.6.18.Company Locations (2)
2.6.19.Business Model Options for Start-ups
2.6.20.Business and Operating Model Adoption
2.6.21.6 Key Drivers for Autonomous Trucks (1)
2.6.22.6 Key Drivers for Autonomous Trucks (2)
2.6.23.Remaining Hurdles for Autonomous Trucks
2.6.24.IDTechEx opinion
3.SUMMARY OF AUTONOMOUS ACTIVITY AND PROGRESS IN TRUCKS
3.1.Locations Split by Vehicle Types
3.2.Table of Vehicles and Value Chain Position of Companies in Commercial Autonomy
3.3.Ones to Watch - Autonomous Trucks
3.4.SWOT analysis and comparisons for autonomous trucks
3.5.Commercial readiness and opportunity comparison, roboshuttle, autonomous buses, autonomous trucks.
3.6.IDTechEx predicted timelines
4.ENABLING TECHNOLOGIES: CAMERAS
4.1.Cameras in Autonomous Trucks
4.2.RGB/Visible light camera
4.3.CMOS image sensors vs CCD cameras
4.4.Key Components of CMOS
4.5.Front vs backside illumination
4.6.Reducing Cross-talk
4.7.Global vs Rolling Shutter
4.8.TPSCo: Leading foundry for global shutter
4.9.Sony: CMOS Breakthrough?
4.10.Sony: BSI global shutter CMOS with stacked ADC
4.11.OmniVision: 2.µm global shutter CMOS for automotive
4.12.Hybrid organic-Si global shutter CMOS
4.13.Event-based Vision: A New Sensor Type
4.14.What is Event-based Sensing?
4.15.General event-based sensing: Pros and cons
4.16.What is Event-based Vision? (I)
4.17.What is Event-based Vision? (II)
4.18.What is event-based vision? (III)
4.19.What does event-based vision data look like?
4.20.Event Based Vision in Autonomy?
5.ENABLING TECHNOLOGIES: THERMAL CAMERAS
5.1.Thermal Cameras in Autonomous Trucks
5.2.Segmenting the Electromagnetic Spectrum
5.3.The Need for NIR
5.4.OmniVision: Making Silicon CMOS Sensitive to NIR
5.5.OmniVision: Making Silicon CMOS Sensitive to NIR
5.6.Motivation For Short-Wave Infra-Red (SWIR) Imaging
5.7.Why SWIR in Autonomous Mobility
5.8.Other SWIR Benefits: Better On-Road Hazard Detection
5.9.SWIR Sensitivity of Materials
5.10.SWIR Imaging: Incumbent and Emerging Technology Options
5.11.The Challenge of High Resolution, Low Cost IR Sensors
5.12.Silicon Based SWIR Detection - TriEye
6.ENABLING TECHNOLOGIES: QUANTUM DOTS AS OPTICAL SENSOR MATERIALS FOR IR, NIR, SWIR
6.1.Quantum Dots as Optical Sensor Materials
6.2.Quantum Dots: Choice of the Material System
6.3.Other Ongoing Challenges
6.4.Advantage of Solution Processing
6.5.QD-Si CMOS at IR and NIR
6.6.QD-Si CMOS at IR and NIR
6.7.Hybrid QD-Si Global Shutter CMOS at IR and NIR
6.8.Emberion: QD-Graphene SWIR Sensor
6.9.Emberion: QD-Graphene-Si Broadrange SWIR sensor
6.10.SWIR Vision Sensors: First QD-Si Cameras and/or an Alternative to InVisage?
6.11.SWIR Vision Sensors: First QD-Si Cameras and/or an Alternative to InVisage?
6.12.SWIR Vision Sensors: First QD-Si Cameras and/or an Alternative to InVisage?
6.13.SWIR Vision Sensors: First QD-Si Cameras and/or an Alternative to InVisage?
6.14.QD-ROIC Si-CMOS integration examples (IMEC)
6.15.QD-ROIC Si-CMOS Integration Examples (RTI International)
6.16.QD-ROIC Si-CMOS Integration Examples (ICFO)
6.17.QD-ROIC Si-CMOS Integration Examples (ICFO)
7.ENABLING TECHNOLOGIES: LIDAR
7.1.LiDAR in Autonomous Trucks
7.2.LiDAR classifications
7.3.Automotive LiDAR: Operating process
7.4.Automotive LiDAR: Requirements
7.5.LiDAR system
7.6.LiDAR working principle
7.7.Laser range finder function for the first production car
7.8.Comparison of lidar product parameters
7.9.TOF vs FMCW LiDAR
7.10.LiDAR scanning categories
7.11.Summary of lidars with various beam steering technologies
7.12.Comparison of common beam steering options
7.13.Overview of beam steering technologies
7.14.Point cloud
7.15.Lidar signal applications
7.16.3D point cloud modelling
7.17.LiDAR challenges
7.18.Poor weather performance: Challenges & solutions
7.19.Early possible adoption of Lidar
7.20.Velodyne lidar portfolios
7.21.Valeo SCALA
7.22.Livox: Risley prisms
7.23.Automotive lidar players by technology
8.ENABLING TECHNOLOGIES: RADAR
8.1.Radar in Autonomous Trucks
8.2.Typical Sensor Suite for Autonomous Cars
8.3.Radar Has a Key Place in Automotive Sensors
8.4.The Need for and Emergence of Imaging Radar
8.5.4D Radars and Imaging Radars
8.6.Radar Trends: Volume and Footprint
8.7.Radar Trends: Packaging and Performance
8.8.Radar Trends: Increasing Range
8.9.Radar Trends: Field of View
8.10.Radar Trilemma
8.11.Radar Anatomy
8.12.Radar Key Components
8.13.Primary Radar Components - The Antenna
8.14.Primary Radar Components - the RF Transceiver
8.15.Primary Radar Components - MCU
8.16.Automotive Radars: Frequency Trends
8.17.Trends in Transceivers
8.18.Two Approaches to Larger Channel Counts
8.19.Semiconductor Technology Trends in Radar
8.20.Funding for Radar Start-ups
8.21.Future Radar Packaging Choices
8.22.Leading players - tier 1 suppliers
8.23.Transceiver suppliers
8.24.Supply chain
8.25.Example products from a tier 1 - Continental
8.26.Example products from a tier 1 - Bosch
8.27.Example of radar start-up - Arbe
8.28.Arbe and its Investors
8.29.Example of radar start-up - Zadar
9.FORECASTS
9.1.Notes on the forecasts chapter
9.2.Method
9.3.Heavy-Duty Trucking Unit Sales 2023-2044
9.4.Autonomous truck pricing 2018-2044
9.5.Heavy-Duty Trucking Revenue 2023-2044
9.6.Miles and service revenue for autonomous trucks 2023-2044
9.7.Autonomous truck powertrains 2023-2044
9.8.Sensors for autonomous trucks 2021-2044
10.COMPANY PROFILES
10.1.Aurora
10.2.Bosch
10.3.Continental AG
10.4.DeepWay
10.5.Einride: Automating Logistics
10.6.Hyundai
10.7.Inceptio
10.8.Innoviz
10.9.Innoviz
10.10.Kodiak Robotics: Autonomous Trucking Start-up
10.11.Mobileye: ADAS & Autonomy Computation
10.12.Ouster
10.13.plus.ai
10.14.Pony.ai
10.15.Terraline
10.16.Tesla Motors
10.17.Torc: An Autonomous Technology Company in Roboshuttles and Trucks
10.18.Trunk Tech
10.19.TuSimple
10.20.Valeo
10.21.Velodyne LIDAR
10.22.Volvo Trucks - Truck Electrification
10.23.Waymo (2023)
10.24.Waymo (2024)
 

Ordering Information

자율주행 트럭 기술, 주요 트랜드 및 시장 전망 2024-2044

£$¥
전자 (사용자 1-5명)
£5,650.00
전자 (사용자 6-10명)
£8,050.00
전자 및 1 하드 카피 (사용자 1-5명)
£6,450.00
전자 및 1 하드 카피 (사용자 6-10명)
£8,850.00
전자 (사용자 1-5명)
€6,400.00
전자 (사용자 6-10명)
€9,100.00
전자 및 1 하드 카피 (사용자 1-5명)
€7,310.00
전자 및 1 하드 카피 (사용자 6-10명)
€10,010.00
전자 (사용자 1-5명)
$7,000.00
전자 (사용자 6-10명)
$10,000.00
전자 및 1 하드 카피 (사용자 1-5명)
$7,975.00
전자 및 1 하드 카피 (사용자 6-10명)
$10,975.00
전자 (사용자 1-5명)
元50,000.00
전자 (사용자 6-10명)
元72,000.00
전자 및 1 하드 카피 (사용자 1-5명)
元58,000.00
전자 및 1 하드 카피 (사용자 6-10명)
元80,000.00
전자 (사용자 1-5명)
¥990,000
전자 (사용자 6-10명)
¥1,406,000
전자 및 1 하드 카피 (사용자 1-5명)
¥1,140,000
전자 및 1 하드 카피 (사용자 6-10명)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

보고서 통계

슬라이드 248
Companies 24
전망 2044
게시 Jun 2024
ISBN 9781835700457
 

콘텐츠 미리보기

pdf Document Webinar Slides
pdf Document Sample pages
 
 
 
 

Subscription Enquiry