1. | EXECUTIVE SUMMARY |
1.1. | Introduction: defining AR, MR, VR and XR |
1.2. | Applications in VR, AR & MR |
1.3. | Optics and AR/MR/VR Devices |
1.4. | Motivation - why are XR optics important? |
1.5. | XR headsets: state of the market in 2022 |
1.6. | Classifying headsets |
1.7. | Overall AR and VR headset market forecast (device volume) |
1.8. | Overall AR and VR headset market forecast (revenue) |
1.9. | XR headsets: Optical technology choices |
1.10. | The AR/MR optics technology landscape |
1.11. | AR combiners: Promising technological candidates |
1.12. | Status and market potential of optical combiners |
1.13. | Wide FoV AR combiner technology forecast (adoption proportions) |
1.14. | Narrow FoV AR combiner technology forecast (adoption proportions) |
1.15. | AR combiner technology players |
1.16. | AR/MR: Ancillary lenses for waveguides |
1.17. | Everyone wants a chunk of the metaverse: Big Tech entry into the AR/MR market |
1.18. | The VR optics technology landscape |
1.19. | Technological status of VR lens technologies |
1.20. | VR lenses: the winning technological solutions |
1.21. | VR lens technology forecast (adoption proportions) |
1.22. | Lens technology players: VR and ancillary AR lenses |
1.23. | Major headset OEMs |
1.24. | Optics revenue forecasts |
1.25. | AR/MR combiners: key technological takeaways |
1.26. | Ancillary lenses for waveguides: key technological takeaways |
1.27. | VR lenses: key technological takeaways |
2. | INTRODUCTION TO VR/AR/MR |
2.1. | Introduction: defining AR, MR, VR and XR |
2.2. | AR, MR, VR and XR: a brief history |
2.3. | The 2010s to date - the age of XR begins |
2.4. | XR nomenclature - a source of confusion |
2.5. | XR nomenclature used in this report |
2.6. | Nomenclature confusion: AR, MR and smartglasses |
2.7. | Further confusion: passthrough and see-through AR |
2.8. | Gauging interest: Google search trends |
2.9. | AR, MR and VR - market development |
2.10. | The VR market is consolidating |
2.11. | Applications in VR, AR & MR |
2.12. | The "metaverse" - hype or the new shape of the internet? |
2.13. | Industry 4.0 and XR |
2.14. | VR/AR solutions for Industry 4.0 |
2.15. | Optical requirements for XR |
2.16. | AR/MR vs. VR optics: development status and design considerations |
2.17. | How the human eye understands space |
2.18. | Defining field of view (FoV) - a key consideration for XR optics |
2.19. | Eyebox and eye relief: keys to XR usability |
2.20. | An immersive experience requires a wide field of view (FoV) - but is this always necessary? |
2.21. | Field of view for different headsets |
2.22. | No free lunches: etendue, FoV and eyebox |
2.23. | Transmission and eye glow - measures of AR's social acceptability |
2.24. | Optical aberrations present design challenges |
2.25. | The vergence-accommodation conflict |
2.26. | Optical 'building blocks' of an AR system |
2.27. | Potential Big Tech entries to the AR market (I) |
2.28. | Potential Big Tech entries to the AR market (II) |
2.29. | Bytedance and Pico - late to the metaverse race? |
2.30. | VR headsets: major OEMs |
2.31. | AR/MR headsets: major OEMs |
3. | OVERALL MARKET FORECASTS |
3.1. | Forecasting methodology |
3.1.1. | Methodology - device and component forecasts |
3.1.2. | Material requirement forecasting methodology |
3.1.3. | Methodology - material forecasting |
3.2. | Headset and overall optics forecasts |
3.2.1. | Overall AR and VR headset market forecast (device volume) |
3.2.2. | Overall AR and VR headset market forecast (revenue) |
3.2.3. | Overall AR and VR headset market forecast tables |
3.2.4. | Optics revenue forecasts |
3.2.5. | Optics revenue forecasts |
3.3. | Component forecasts |
3.3.1. | Notes on component forecasts |
3.3.2. | Wide FoV AR combiner technology forecast (adoption proportions) |
3.3.3. | Wide FoV AR combiner technology forecast (headset volume) |
3.3.4. | Wide FoV AR combiner technology forecast (adoption proportions) |
3.3.5. | Wide FoV AR combiner volume forecast by technology - headset volumes |
3.3.6. | Narrow FoV AR combiner technology forecast (adoption proportions) |
3.3.7. | Narrow FoV AR combiner technology forecast (headset volume) |
3.3.8. | Narrow FoV AR combiner technology forecast (adoption proportions) |
3.3.9. | Narrow FoV AR combiner lens volume forecast by technology - headset units |
3.3.10. | Total AR combiner technology forecast (adoption proportions) |
3.3.11. | Total AR combiner technology forecast (headset volume) |
3.3.12. | Total AR combiner technology forecast (adoption proportions) |
3.3.13. | Total FoV AR combiner lens volume forecast by technology - headset units |
3.3.14. | Total AR combiner revenue forecast |
3.3.15. | Total AR combiner revenue forecast |
3.3.16. | VR lens technology forecast (adoption proportions) |
3.3.17. | VR lens technology forecast (headset volume) |
3.3.18. | VR lens technology forecast (adoption proportions) |
3.3.19. | VR lens volume forecast by technology (headset volume) |
3.3.20. | VR lens revenue forecast |
3.3.21. | VR lens revenue forecast |
3.4. | Material forecasts (high-level) |
3.4.1. | Material requirement forecasting methodology |
3.4.2. | Material forecasts (volume): AR combiners (wide and narrow FoV combined) |
3.4.3. | Material forecasts (mass): AR combiners (wide and narrow FoV combined) |
3.4.4. | Material forecasts (volume): AR combiners (wide and narrow FoV combined) |
3.4.5. | Material forecasts (mass): AR combiners (wide and narrow FoV combined) |
3.4.6. | AR combiners: identifying material opportunities (I) |
3.4.7. | AR combiners: identifying material opportunities (II) |
3.4.8. | AR combiners: identifying material opportunities (III) |
3.4.9. | Material forecasts (volume): VR lenses |
3.4.10. | Material forecasts (mass): VR lenses |
3.4.11. | Material forecasts (volume): VR lenses |
3.4.12. | Material forecasts (mass): VR lenses |
3.4.13. | Material forecasting: assumptions for geometric phase lens arrays |
3.4.14. | VR lenses: identifying material opportunities (I) |
3.4.15. | VR lenses: identifying material opportunities (II) |
3.4.16. | VR lenses: identifying material opportunities (III) |
4. | TECHNOLOGY ASSESSMENT: OPTICAL COMBINERS/WAVEGUIDES |
4.1. | Introduction to waveguide/combiner technologies |
4.1.1. | The AR/MR optics technology landscape |
4.1.2. | Optical combiners: definition and classification |
4.1.3. | Common waveguide architectures |
4.1.4. | Common waveguide architectures: Operating principle and device examples |
4.1.5. | Common waveguides architectures: the influence of eyebox size |
4.1.6. | Waveguide substrate materials (I) |
4.1.7. | Waveguide substrate materials (II) |
4.1.8. | Comparison between waveguide methodologies |
4.1.9. | Big Tech and AR: All-in on diffractive waveguides? |
4.1.10. | Trouble at Microsoft? The future of Hololens devices and possible usage of holographic waveguides |
4.1.11. | Big Tech and AR: What about Meta? |
4.1.12. | Magic Leap: Back for round 2? |
4.1.13. | The industry landscape for optical combiners |
4.2. | Reflective/geometric waveguides |
4.2.1. | Introduction: reflective (geometric) waveguides |
4.2.2. | Reflective waveguides - benefits and drawbacks |
4.2.3. | Reflective waveguides: Manufacturing |
4.2.4. | Reflective waveguides: development potential |
4.2.5. | Summary: Current vs. potential future performance of reflective waveguides |
4.2.6. | Reflective Waveguides: SWOT Analysis |
4.3. | Diffractive waveguides |
4.3.1. | Introduction: diffractive waveguides |
4.3.2. | Diffractive waveguides: method of operation |
4.3.3. | Challenges of handling multiple colors with diffractive waveguides |
4.3.4. | Surface relief diffractive waveguides in Microsoft's HoloLens 2: ambitious design, unfortunate issues |
4.3.5. | The first commercial holographic waveguide: the Sony SED-100A |
4.4. | Surface relief gratings (SRG) |
4.4.1. | Introduction: surface relief grating waveguides |
4.4.2. | Surface relief waveguide example: HoloLens 1 |
4.4.3. | Microsoft's butterfly waveguide combiner |
4.4.4. | Surface relief grating waveguide example: Magic Leap 1 |
4.4.5. | Manufacturing techniques for surface relief grating waveguides |
4.4.6. | Manufacturing techniques for SRG waveguides: the next step |
4.4.7. | Manufacturing techniques for SRG waveguides: the next step |
4.4.8. | Wafer-scale alternatives to nano-imprint lithography |
4.4.9. | Manufacturing SRG waveguides - direct etching for high refractive index materials |
4.4.10. | Manufacturing SRGs - the future of direct etching |
4.4.11. | Diffractive Waveguides (SRG): SWOT Analysis |
4.5. | Volumetric holographic gratings (VHG) |
4.5.1. | Introduction: Volume holographic grating waveguides |
4.5.2. | Switchable holographic waveguides for resolution expansion |
4.5.3. | Fabricating volume holographic waveguides |
4.5.4. | Diffractive Waveguides (VHG): SWOT Analysis |
4.6. | Other combiner technologies |
4.6.1. | Freespace holographic optical element (HOE) combiners |
4.6.2. | HOE combiners: SWOT analysis |
4.6.3. | Conventional reflective combiners |
4.6.4. | Conventional reflective combiners - what use cases make sense? |
4.6.5. | Birdbath optics |
4.6.6. | Birdbath combiners: SWOT analysis |
4.6.7. | Bugeye combiners: SWOT analysis |
4.6.8. | Prism combiners: SWOT analysis |
4.6.9. | Pin mirror combiners |
4.6.10. | Pin mirror combiners: SWOT analysis |
4.7. | Combiners/waveguides: Technology benchmarking and adoption proportions |
4.7.1. | Benchmarking methodology: combiners/waveguides |
4.7.2. | Technology benchmarking: criteria for combiners |
4.7.3. | Tech benchmarking: AR combiners |
4.7.4. | AR combiners: weighted average benchmarking scores |
4.7.5. | The future of waveguide technology |
4.7.6. | Status and market potential of optical combiners |
4.7.7. | Optical combiners - what attributes are important? |
4.7.8. | Comparing waveguide types: 2022 vs. 2032 |
4.7.9. | Manufacturability of waveguides - why is this expected to change? |
4.7.10. | Why reflective waveguides are likely dominate for immersive consumer AR/MR |
4.7.11. | What about non-waveguide combiners? |
4.7.12. | Forecasting adoption proportion for AR combiner technologies |
4.7.13. | Forecast dominant technologies: wide FoV AR/MR |
4.7.14. | Forecast dominant technologies: narrow FoV AR/MR |
4.7.15. | Wide FoV AR combiner technology forecast (adoption proportions) |
4.7.16. | Narrow FoV AR combiner technology forecast (adoption proportions) |
4.7.17. | Total AR combiner technology forecast (adoption proportions) |
4.8. | Waveguides/combiners: Company profiles |
4.8.1. | AR combiner technology players |
4.8.2. | Lumus: Company overview |
4.8.3. | Lumus: SWOT Analysis |
4.8.4. | Optinvent: Company overview |
4.8.5. | Optinvent: SWOT Analysis |
4.8.6. | DigiLens: Company overview (I) |
4.8.7. | DigiLens: Company overview (II) |
4.8.8. | DigiLens: SWOT Analysis |
4.8.9. | Mira: Company overview |
4.8.10. | Mira: SWOT Analysis |
4.8.11. | TruLife Optics: Company overview |
4.8.12. | TruLife Optics: SWOT Analysis |
4.8.13. | Kura Technologies: Company Overview |
4.8.14. | Kura Technologies: SWOT Analysis |
4.8.15. | Vuzix: Company Overview |
4.8.16. | Vuzix: SWOT Analysis |
4.8.17. | Luminit/Holoptic: Company Overview (I) |
4.8.18. | Luminit/Holoptic: Company Overview (II) |
4.8.19. | Luminit/Holoptic: SWOT Analysis |
4.8.20. | WaveOptics: Company overview |
4.8.21. | WaveOptics/Snap: SWOT Analysis |
4.8.22. | LetinAR: Company overview |
4.8.23. | LetinAR: SWOT Analysis |
4.8.24. | NReal: Company overview |
4.8.25. | NReal: SWOT Analysis |
4.8.26. | NEDGlass: Company overview |
4.8.27. | NEDGlass: SWOT Analysis |
4.8.28. | Dispelix: Company Overview |
4.8.29. | Dispelix: SWOT Analysis |
4.8.30. | Lochn Optics: Company Overview |
4.8.31. | Lochn Optics: SWOT Analysis |
4.8.32. | ImagineOptix: Company Overview |
4.8.33. | Akonia - acquired by Apple |
4.9. | Ancillary lenses for waveguides |
4.9.1. | The AR/MR optics technology landscape |
4.9.2. | Why encapsulate waveguides with lenses? |
4.9.3. | Ancillary lenses fill gaps in waveguide capabilities |
4.9.4. | Static accommodation adjustment |
4.9.5. | Prescription correction: 3D printing offers an elegant solution |
4.9.6. | Correcting the vergence-accommodation conflict |
4.10. | Ancillary lenses for waveguides: company profiles |
4.10.1. | Luxexcel: Company Overview |
4.10.2. | Luxexcel: SWOT Analysis |
4.10.3. | Deep Optics: Company Overview |
4.10.4. | Deep Optics: SWOT Analysis |
5. | TECHNOLOGY ASSESSMENT: LENSES |
5.1. | Introduction to VR lens technologies |
5.1.1. | The VR optics technology landscape |
5.1.2. | Lenses in VR |
5.2. | Established lenses: Fresnel lenses and conventional lenses |
5.2.1. | Fresnel Lenses vs. Singlets |
5.2.2. | Meta (Facebook)-patented hybrid Fresnel lens |
5.2.3. | Fresnel doublets |
5.2.4. | Users modifying headsets |
5.2.5. | Fresnel lenses: SWOT analysis |
5.3. | Emerging lens architectures |
5.3.1. | Where can emerging architectures offer value? |
5.3.2. | Emerging lens technologies by TRL |
5.3.3. | The vergence-accommodation conflict |
5.3.4. | Solutions to the vergence-accommodation conflict for VR |
5.3.5. | SWOT: VA conflict solutions (I) |
5.3.6. | SWOT: VA conflict solutions (II) |
5.4. | Geometric/Pancharatnam-Berry phase lenses |
5.4.1. | Introduction to geometric phase lenses |
5.4.2. | Flat lenses: diffractive optics, metasurfaces, liquid crystals and more |
5.4.3. | Why geometric phase lenses matter |
5.4.4. | What is geometric (Pancharatnam-Berry) phase? |
5.4.5. | Optically anisotropic materials and GPLs |
5.4.6. | Liquid crystals and switchable waveplates |
5.4.7. | Liquid crystals in GPLs |
5.4.8. | Metasurfaces: another method to apply geometric phase |
5.4.9. | Introduction to optical meta-surfaces |
5.4.10. | Harvard: Manufacturing optical metamaterials |
5.4.11. | Harvard: Applications for metalenses/metasurfaces |
5.4.12. | MetaLenz: Metasurfaces for distributing light and imaging |
5.4.13. | MetaLenz: Manufacturing metasurfaces via semiconductor fabrication |
5.4.14. | Metamaterial Technologies develop rolling mask lithography |
5.4.15. | Geometric phase lenses for VR and AR: production methods |
5.5. | Other emerging lens architectures |
5.5.1. | Polarization-based pancake lenses |
5.5.2. | Devices using pancake lenses |
5.5.3. | Tunable liquid crystal lenses |
5.5.4. | Meta/Oculus: combining emerging lens technologies |
5.6. | Lenses: technology benchmarking and adoption proportions |
5.6.1. | Benchmarking methodology |
5.6.2. | Lens technology benchmarking: criteria (I) |
5.6.3. | Lens technology benchmarking (II): special criterion |
5.6.4. | Tech benchmarking: VR lenses |
5.6.5. | VR lenses: weighted average benchmarking scores |
5.6.6. | Benchmarking: conclusions to inform forecasting |
5.6.7. | VR lens technology forecast (adoption proportions) |
5.6.8. | VR lens forecasting justification |
5.6.9. | Lenses: Company profiles |
5.6.10. | Lynx: Company overview (I) |
5.6.11. | Lynx: Company overview (II) |
5.6.12. | Lynx: SWOT Analysis (focusing on optics) |
5.6.13. | Limbak: Company overview |
5.6.14. | Limbak: SWOT Analysis |
5.6.15. | Kopin: Company overview |
5.6.16. | Kopin: SWOT Analysis |
5.6.17. | Metamaterial Technologies: Company overview |
5.6.18. | Metamaterial Technologies: SWOT Analysis |
6. | OPTICAL MATERIALS FOR XR |
6.1.1. | Key material opportunities in AR/VR |
6.1.2. | Advanced optical plastics - high volume with clear opportunities for innovation |
6.1.3. | Liquid crystal photopolymer materials - specialized materials for a new paradigm in optics |
6.1.4. | Photopolymers - enabling low-cost AR |
6.1.5. | Optic coatings in VR and AR |
6.1.6. | Anti-reflective coatings |
6.1.7. | Beam-splitter coatings |
6.1.8. | Metal mirror coatings |
6.1.9. | Companies: Optical Coatings |
6.2. | Materials: Company profiles |
6.2.1. | Inkron: Company overview |
6.2.2. | Inkron: SWOT Analysis |
6.2.3. | SCHOTT AG: Company overview |
6.2.4. | SCHOTT AG: SWOT Analysis |
6.2.5. | Denton Vacuum |
6.2.6. | AccuCoat inc |
6.2.7. | Optics Balzers |