항균 기술 시장 (2021-2031년): IDTechEx

This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

항균 기술 시장 (2021-2031년)

항균 첨가제 및 항균 코팅은, 지속적이고 잔류하는 항박테리아, 항바이러스, 항진균 작용을 제공한다


모두 보기 설명 목차, 표 및 그림 목록 가격 Related Content
코로나19 전염병으로 인해 전세계 수십억 명의 사람들에게 오염된 표면으로부터 보호하면서, 항균 기술이 각광을 받고 있다. 이러한 제품들의 배경에는 어떤 기술이 있는가? 어떻게 작동하는가? 이러한 시장 추세를 활용하려는 기업의 주요 고려사항은 무엇이며, 추가 미개발 시장은 무엇인가? 이제 차세대 항균제를 개발할 때가 되었다.
The COVID-19 pandemic has been one of the world's worst public health emergencies in living memory and has affected all aspects of life around the world. The pandemic has also propelled awareness of antimicrobial technology and antimicrobial products to new heights. Players in the antimicrobial technology market are developing antimicrobial additives and antimicrobial coatings to meet unprecedented demand for new antimicrobial products, with industry players seeing double-, triple-, or even quadruple-digit growth.
 
What are antimicrobial technologies?
Antimicrobial technologies, as covered in this IDTechEx report, refers to antimicrobial additives and antimicrobial coatings that decrease or even eliminate the activity of microorganisms, including bacteria, virus, and fungi. While regular cleaning can remove and kill the microorganisms present on a surface, antimicrobial technologies offer continuous protection between cleans.
 
But even before the COVID-19 pandemic, antimicrobial technologies have been saving lives and money across a broad number of sectors. A key driver for the use of antimicrobial technologies is their ability to address hospital-acquired infections (or healthcare-associated infections). When used in healthcare facilities such as hospitals, antimicrobial technologies have been demonstrated to significantly decrease the rates of infection. By doing so, thousands if not tens of thousands of deaths can be prevented, and billions of dollars can be saved.
 
There are many opportunities beyond the healthcare sector, including food, agriculture, aquaculture, construction (including HVAC systems), and public settings. The use of antimicrobial paints, antimicrobial coatings and antimicrobial additives in the built environment can not only extend the lifetime of the protected product, but also indirectly improve human health through addressing indoor air quality. Antimicrobial textiles can provide anti-odour effect to clothing, curtains, carpets, and soft furnishings. With the world moving against the prophylactic use of antibiotics in agriculture, antimicrobial companies are beginning to fill in the gap. And now, the COVID-19 pandemic has shed light on the importance of cleaning high-touch surfaces in public settings, and the role of antimicrobial technologies in providing safe environments for people in a post-pandemic world.
 
What is in this report?
This report takes a deep dive into key antimicrobial technologies. The mechanism of action of each antimicrobial technology is explained and a comparison of efficacy claims from companies commercializing antimicrobial technologies is provided. Profiles of both major and emerging players, including primary interviews, are included in the report.
 
The key antimicrobial technologies covered in the report are:
  • Silver, including silver chloride, silver zeolite, silver nanoparticles
  • Copper, including copper oxide and copper nanoparticles
  • Zinc, including zinc oxide and zinc pyrithione
  • Silane quaternary ammonium compounds
  • Titanium dioxide
 
The report also highlights a further 10 antimicrobial technologies either commercialized or in development, including new materials, innovative methods to stabilize and localize traditional disinfectants, biomimetic technologies such as surface patterning techniques, and antimicrobials derived from nature, such as enzymes, peptides, and dyes.
 
IDTechEx have identified over 100 companies that are actively developing antimicrobial technologies and products, including over 60 companies focused entirely in this area. Discussion on market sizing, market outlook, market forecast, and the effect of the COVID-19 pandemic are also included in the report.
 
Why is this important?
The information provided in this report will be helpful to those seeking to follow this rising antimicrobial trend by clarifying considerations in developing antimicrobial technology. While technologies may appear similar at first glance, the pandemic is driving a rise in companies looking to make quick wins by operating in grey areas. With public awareness at an all-time high, now is the time to develop environmentally responsible, sustainable, effective, and future-proof antimicrobial products. Antimicrobial technologies have significant potential beyond exiting the COVID-19 pandemic safely, but can also bring about worse problems when used incorrectly.
IDTechEx의 분석가 액세스
모든 보고서 구입에는 전문가 분석가와의 최대 30분의 전화통화 시간이 포함되어, 보고서의 주요 결과를 귀하가 제시하는 비즈니스 문제에 연결하도록 돕습니다. 이 전화통화는 보고서를 구매한 후 3개월 이내에 사용해야합니다.
추가 정보
이 보고서에 대해 궁금한 점이 있으시면 언제든지 research@IDTechEx.com으로 보고서 팀에 문의하거나, 영업 관리자에게 문의하십시오

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
ASIA (Korea): +82 10 3896 6219
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY& CONCLUSIONS
1.1.Antimicrobial Technology Market: Scope of the Report
1.2.Microorganisms are Everywhere
1.3.Key Driver: COVID-19
1.4.Key Driver: Hospital Acquired Infections
1.5.Key Driver: Antimicrobial Resistance
1.6.Antimicrobial Technology Market: Players
1.7.Antimicrobial Technology Players: By Technology
1.8.Summary of Key Antimicrobial Technologies
1.9.Environmental Considerations of Antimicrobial Technologies
1.10.Antimicrobial Technology and Antibiotic Resistance
1.11.Technology Conclusions and Outlook
1.12.Antimicrobial Technology Players: By Size and Year Founded
1.13.Key Applications of Antimicrobial Technologies
1.14.Antimicrobial Technology Market
1.15.Antimicrobial Technology Market: Effect of COVID-19
1.16.Antimicrobial Technology Market Size in 2020
1.17.Antimicrobial Technology Market Outlook
1.18.Antimicrobial Technology Market Forecast 2021-2031
2.INTRODUCTION
2.1.Scope of the Report
2.2.Microorganisms are Everywhere
2.3.Bacteria
2.4.Bacteria: Biology
2.5.Bacteria: Biofilm
2.6.Mold and Mildew
2.7.Virus
2.8.Key Driver: COVID-19
2.9.Key Driver: Hospital Acquired Infections
2.10.Key Driver: Antimicrobial Resistance
2.11.Ideal Antimicrobial Technology
3.MATERIALS AND TECHNOLOGIES
3.1.1.Techniques to Control Microorganisms
3.1.2.Mechanisms of Action
3.1.3.Substrates
3.1.4.Metals
3.2.Silver
3.2.1.Silver: Mechanism of Action
3.2.2.Silver: Efficacy
3.2.3.Silver: Effect of Moisture
3.2.4.Silver: Environmental Concerns
3.2.5.Silver: Potential for Resistance
3.2.6.Silver: SWOT Analysis
3.2.7.Silver: Players
3.2.8.Addmaster: Biomaster
3.2.9.Applied Silver: SilvaClean
3.2.10.Applied Silver: SilvaClean
3.2.11.AST Products: RepelaCOAT
3.2.12.Covalon: CovaClear, CovaCoat, and more
3.2.13.DuPont: SILVADUR
3.2.14.HeiQ: HeiQ Pure, HeiQ Viroblock
3.2.15.Inhibit Coatings
3.2.16.Innovotech: InnovoSIL and Agress
3.2.17.Microban: SilverShield
3.2.18.Noble Biomaterials: Ionic+
3.2.19.PURE Bioscience: PURE Hard Surface
3.2.20.Sanitized
3.2.21.Sciessent: Agion
3.2.22.Sciessent: Agion for Medical
3.3.Copper
3.3.1.Copper: Mechanism of Action
3.3.2.Copper: Efficacy
3.3.3.Copper: Potential for Resistance
3.3.4.Copper: Comparison with Silver
3.3.5.Copper: SWOT Analysis
3.3.6.Copper: Players
3.3.7.Aereus Technologies: CuVerro Shield
3.3.8.CleanCU: K COPPER PLUS
3.3.9.Copptech
3.3.10.Cupron
3.3.11.Nanosafe Solutions: AqCure and NSafe+
3.3.12.Antimicrobial Copper
3.4.Zinc
3.4.1.Zinc: Mechanism of Action
3.4.2.Zinc: Efficacy
3.4.3.Zinc: Potential for Resistance
3.4.4.Zinc: SWOT Analysis
3.4.5.Zinc: Players
3.4.6.Ascend Performance Materials: Acteev Protect
3.4.7.Microban: ZPTech
3.4.8.Thomson Research Associates: Ultra-Fresh
3.4.9.Parx Materials
3.4.10.Sonovia
3.5.Silane Quaternary Ammonium Compounds (Silane Quat)
3.5.1.Silane Quat: Mechanism of Action
3.5.2.Silane Quat: Efficacy
3.5.3.Silane Quat: SWOT Analysis
3.5.4.Silane Quat: Players
3.5.5.Goldshield Technologies: GS5 and GS75
3.5.6.Microban: AEGIS MicrobeShield
3.6.Titanium Dioxide
3.6.1.Titanium Dioxide: Mechanism of Action
3.6.2.Titanium Dioxide: Efficacy
3.6.3.Titanium Dioxide: SWOT Analysis
3.6.4.Titanium Dioxide: Players
3.6.5.Kastus
3.7.Others
3.7.1.Other Antimicrobial Technologies
3.7.2.PolyDADMAC
3.7.3.Quick-Med Technologies: Nimbus
3.7.4.Polyhexamethylene biguanide (PHMB)
3.7.5.BioInteractions: AvertPlus
3.7.6.Calcium Hydroxide
3.7.7.Alistagen: Caliwel
3.7.8.Hydrogen Peroxide: Quick-Med Technologies
3.7.9.Photosensitizing Chemicals
3.7.10.Dyphox
3.7.11.Silicon Nitride
3.7.12.SINTX Technologies
3.7.13.Chlorine: UMF Corporation
3.7.14.Surface Patterns
3.7.15.Sharklet Technologies
3.7.16.Graphene
3.7.17.Piezoelectric Polymers and Fibers
3.7.18.Pieclex
3.7.19.Antimicrobial Peptides
3.7.20.Amicoat: AMC-109
3.7.21.NitroPep
3.8.Technology Summary and Other Considerations
3.8.1.Antimicrobial Technologies: Summary
3.8.2.Laboratory vs Real Life Efficacy
3.8.3.Levels of Evidence
3.8.4.Environmental Considerations
3.8.5.Antibiotic Resistance
3.8.6.Technology Conclusions and Outlook
4.APPLICATIONS
4.1.Overview of Antimicrobial Technology Applications
4.2.Healthcare: Hospitals and Other Healthcare Facilities
4.3.Healthcare: Medical Devices
4.4.Healthcare: Advanced Wound Care
4.5.Healthcare: Costs of Infections
4.6.Healthcare: Silver
4.7.Healthcare: Copper
4.8.Food
4.9.Agriculture
4.10.High Touch Surfaces
4.11.Construction
4.12.Construction: Examples
4.13.Construction: HVAC
4.14.Automotive
4.15.Product Protection
4.16.Marine
4.17.Fabrics and Textiles
4.18.Summary of Antimicrobial Technology Applications
5.REGULATIONS
5.1.Overview of Antimicrobial Technology Regulations
5.2.USA: EPA and FIFRA
5.3.USA: Residual Efficacy Claims
5.4.USA: Public Health vs Non-Public Health
5.5.USA: Treated Articles
5.6.European Union: ECHA and BPR
5.7.European Union: Approved Actives and Suppliers
5.8.Antimicrobial Technology Testing
5.9.Textiles: OEKO-TEX and Bluesign
6.MARKET LANDSCAPE
6.1.Overview of Antimicrobial Market Landscape
6.2.Antimicrobial Technology Market Overview: By Technology
6.3.Antimicrobial Technology Market: Players
6.4.Antimicrobial Technology Players: By Technology
6.5.Antimicrobial Technology Players: By Country
6.6.Antimicrobial Technology Players: Business Model
6.7.Antimicrobial Technology Players: Size and Year Founded
6.8.Antimicrobial Technology Players: Competition and Differentiation
6.9.Masterbatch and Plastics
6.10.Chemical Corporations
6.11.Paints and Coatings
6.12.Antimicrobial Technology Market
6.13.Antimicrobial Technology Market: Effect of COVID-19
6.14.Antimicrobial Technology Market: Effect of COVID-19
6.15.Antimicrobial Technology Market Size in 2020
6.16.Antimicrobial Technology Market Outlook
6.17.Antimicrobial Technology Market Forecast 2021
6.18.Market Outlook: Silver Prices
6.19.Market Outlook: Copper Prices
7.ANTIMICROBIAL TECHNOLOGY AND COVID-19
7.1.Background COVID-19
7.2.COVID-19 as a Pandemic
7.3.SARS-CoV-2 Transmission
7.4.SARS-CoV-2 and Surfaces
7.5.Examples of Companies Using Antimicrobial Technologies Against COVID-19
7.6.Films and Tubes: CleanCU
7.7.Films and Tubes: TouchPoint Science
7.8.Coatings and Spray: Goldshield Technologies
7.9.Sanitizer Spray: Covalon Technologies
7.10.Application: Antimicrobial Travel
7.11.Application: Cruise Industry
7.12.Risk of Fomite Transmission
7.13.Application: Antimicrobial Face Coverings
7.14.Face Masks: Ascend Performance Materials
7.15.Face Masks: HeiQ
7.16.Face Masks: I3 BioMedical
7.17.Face Masks: Nanosafe Solutions
7.18.Face Masks: Sciessent
7.19.Is Antimicrobial Fashion the Future in a Post-COVID World?
 

보고서 통계

슬라이드 208
전망 2031
ISBN 9781913899318
 
 
 
 

Subscription Enquiry