Emerging Materials and Devices Report

The market for synthetic fibres used in composite parts will exceed $9bn by 2027

Composites 2017-2027: Innovations, Opportunities, Market Forecasts

Complete supply chain analysis and emerging market applications of both synthetic and natural fibre reinforced composite material (FRP, CMC, MMC)


 
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Introduction to composites
1.2.Report layout and hyperlinks
1.3.Innovations at each step to manufacture an FRP part
1.4.Fibre by type, form and maturity
1.5.Global forecast - volume
1.6.Global forecast - revenue
1.7.Global forecast - applications by fibre
1.8.Application hype curve of CFRP
1.9.CMC and MMC applications
1.10.Natural fibres forecast
1.11.Hybrid parts
1.12.Core sandwich materials
1.13.Multifunctional composite materials
1.14.Lightweight material drivers
1.15.Companies spoken to by IDTechEx analyst for this report
2.COMPOSITE INTRODUCTION
2.1.Introduction to composite materials
2.2.Comparison of relative fibre properties
2.3.Cost adjusted fibre properties
2.4.Supply chain for composite manufacturers
3.MATRIX
3.1.Polymer
3.1.1.FRP/PMC introduction
3.1.2.Resins - overview and property comparison
3.1.3.Timeline for resin materials as the polymer matrix
3.1.4.Thermosetting resins - general properties
3.1.5.Thermosetting resins - key resins
3.1.6.Thermosetting innovations - fast curing epoxy resins
3.1.7.Thermosetting hardeners
3.1.8.Thermosetting innovations - polyurethanes (1)
3.1.9.Thermosetting innovations - polyurethanes (2)
3.1.10.FST retardant resins - phenolic replacements (1)
3.1.11.FST retardant resins - phenolic replacements (2)
3.1.12.Thermoplastics for composites - overview
3.1.13.Thermoplastics resins for composites - main players and trends (1)
3.1.14.Thermoplastics resins for composites - main players and trends (2)
3.1.15.Thermoplastic epoxy resins
3.1.16.Reversible crosslinkers
3.1.17.Biobased resins - sustainability and safety
3.1.18.Biobased resins - biodegradable
3.2.Ceramic
3.2.1.CMC introduction
3.2.2.CMC matrix comparison
3.2.3.Interfacial coating
3.3.Metal
3.3.1.MMC introduction
3.3.2.MMC matrix comparison
4.FIBRES
4.1.Carbon fibre - including analysis of general composite manufacturing and supply chain
4.2.Carbon fibre in FRP
4.2.1.Introduction to CFRP
4.2.2.CF Synthesis - overview
4.2.3.PAN-based Fibre - synthesis introduction
4.2.4.PAN-based Fibre - main players
4.2.5.PAN-based fibre - expansion plans for light tow
4.2.6.PAN-based fibre - expansion plans for heavy tow
4.2.7.PAN-based fibre - cost progression through manufacturing expansion
4.2.8.PAN-based fibre - cost progression through manufacturing innovation
4.2.9.PAN-based fibre - cost progression through alternate feedstocks
4.2.10.PAN-based fibre - sizings and surface treatments
4.2.11.Pitch-based fibre - overview, trends, and players
4.2.12.Pitch-based fibre - innovation and cost progression
4.2.13.Forecast for carbon fibre cost progression
4.2.14.Fabric - overview
4.2.15.Fabric - main players and key innovations
4.2.16.Fabrics - braided material
4.2.17.Fabrics - main players for braided fabric
4.2.18.Fabrics - associated industries
4.2.19.Prepreg - overview
4.2.20.Prepreg - next generation products
4.2.21.Prepreg - innovations from main players
4.2.22.Prepreg - towpreg innovations
4.2.23.Prepreg - innovation from nascent companies
4.2.24.Impregnating with thermoplastic resins
4.2.25.Unidirectional tapes and sheets - manufacturing processes
4.2.26.Thin Ply - spreading fibres
4.2.27.Thin ply - main players
4.2.28.Pre-cured pultruded profiles
4.2.29.Associated industries for prepreg materials - industry 4.0
4.2.30.Manufacturing processes - introduction
4.2.31.Manufacturing processes - typical procedure
4.2.32.Manufacturing processes - comparison chart
4.2.33.Manufacturing processes - resin infusion under flexible tooling
4.2.34.Reusable vacuum bags - silicone and natural rubbers
4.2.35.Manufacturing processes - RTM overview
4.2.36.RTM innovations - compression RTM
4.2.37.RTM innovations - Ultra-RTM
4.2.38.Compression moulding innovations - LIT
4.2.39.Compression moulding innovations - ALCM
4.2.40.Compression moulding innovations - PCM, InPreg and DFCM
4.2.41.Short strand manufacturing processes - CF-SMC
4.2.42.Manufacturing processes - PulPress
4.2.43.Manufacturing processes - ATL and AFL
4.2.44.Manufacturing processes - robotic arm advancements
4.2.45.Associated manufacturing industries - permanent instruments and vacuum bags
4.2.46.Associated manufacturing industries - tooling innovations
4.2.47.Associated manufacturing industries - release agents
4.2.48.3D Printing - overview for the composite industry
4.2.49.3D Printing - composite progression
4.2.50.3D Printing - additive manufacturing of short fibre composites
4.2.51.3D Printing - alternatives to extrusion manufacturing for short fibre composites
4.2.52.3D Printing - fibre alignment for short composites
4.2.53.3D Printing - additive manufacturing of continuous fibre composites with thermoplastic
4.2.54.3D Printing - additive manufacturing of continuous fibre composites with thermosets
4.2.55.3D Printing - new composite manufacturing processes
4.2.56.3D Printing - sacrificial tooling
4.2.57.Recycling composites - pyrolysis and solvolysis
4.2.58.Recycling composites - main players
4.2.59.Recycling composites - projects and applications
4.2.60.Recycling composites - thermoplastics
4.2.61.Repairing composite parts
4.2.62.Application hype curve of CFRP
4.2.63.CFRP applications - aerospace: overview
4.2.64.CFRP applications - aerospace: Boeing 777X and Airbus A350 XWB
4.2.65.CFRP applications - aerospace: exterior
4.2.66.CFRP applications - aerospace: interior
4.2.67.CFRP applications - aerospace: engines
4.2.68.CFRP applications - UAVs
4.2.69.CFRP applications - rockets and satellites
4.2.70.CFRP applications - helicopters
4.2.71.CFRP applications - automotive: road map
4.2.72.CFRP applications - automotive: monocoque
4.2.73.CFRP applications - automotive: spaceframe
4.2.74.CFRP applications - automotive: wheels
4.2.75.CFRP applications - automotive: electric
4.2.76.CFRP applications - automotive: hydrogen fuel cell
4.2.77.Links between CF and automotive companies
4.2.78.CFRP applications - wind turbines
4.2.79.CFRP applications - rail industry
4.2.80.CFRP applications - sports and leisure
4.2.81.CFRP applications - medical
4.2.82.CFRP applications - electronics
4.2.83.CFRP applications - marine
4.2.84.CFRP applications - pressurised vessels
4.2.85.CFRP applications - industrial
4.2.86.CFRP applications - building and construction
4.3.Carbon fibre and CMC
4.3.1.CMC manufacturing - introduction
4.3.2.CMC manufacturing - liquid preform infiltration
4.3.3.CMC manufacturing - polymer infiltration and pyrolysis
4.3.4.CMC manufacturing - gaseous preform infiltration
4.3.5.CF CMC applications - automotive
4.3.6.CF CMC applications - space
4.3.7.CF CMC applications - pumps
4.3.8.Carbon fibre forecast
4.3.9.Global forecast of CF
4.3.10.Value chain of CFRP
4.3.11.Forecast of CFRP by application
4.4.Glass fibres
4.4.1.Glass Fibres - introduction and market forecast
4.4.2.High performance glass fibres
4.4.3.Biodegradeable glass fibres
4.4.4.GFRP applications - building and construction
4.4.5.GFRP applications - oil and gas
4.4.6.GFRP applications - transportation interiors
4.4.7.GFRP applications - general automotive
4.4.8.GFRP applications - EV specific
4.5.Natural fibres: bast and mineral
4.5.1.Bast fibres overview
4.5.2.Processing challenges of natural fibres
4.5.3.Continuous flax fibres
4.5.4.Chopped flax fibres
4.5.5.Additional bast fibres
4.5.6.Bast fibres - automotive
4.5.7.Global forecast of bast fibres
4.5.8.Mineral fibre overview
4.5.9.Basalt fibres - introduction
4.5.10.Basalt fibres - key companies and timelines
4.6.Aramid fibres
4.6.1.Aramid fibres - overview and main players
4.6.2.Applications in novel ultralightweight designs
4.6.3.Global forecast of aramid fibres
4.7.Ceramic fibres
4.7.1.Ceramic fibre introduction
4.7.2.Manufacturing continuous SiC fibres
4.7.3.Manufacturing continuous alumina fibres
4.7.4.Ceramic fibre monofilaments
4.7.5.Coating ceramic fibres
4.7.6.3D printing ceramic microfibres
4.7.7.Ceramic fibres in CMC
4.7.8.CMC - main players
4.7.9.CMC applications - introduction
4.7.10.SiC/SiC CMC applications - aerospace and defence
4.7.11.SiC/SiC CMC applications - industrial
4.7.12.Ox/Ox CMC applications - aerospace and defence
4.7.13.Ox/Ox CMC applications - industrial
4.8.Ceramic fibres in MMC
4.8.1.MMC manufacturing - introduction
4.8.2.MMC manufacturing - liquid infiltration
4.8.3.MMC manufacturing - advanced processes
4.8.4.MMC Applications - introduction
4.8.5.Ceramic fibre MMC applications - aerospace and defence
4.8.6.Ceramic fibre MMC applications - space
4.8.7.Ceramic fibre MMC applications - automotive
4.9.Ceramic fibres forecast
4.9.1.Global forecast of continuous SiC Fibres
4.9.2.Global forecast of continuous ceramic fibre
4.10.Polymer fibres
4.10.1.Introduction to polymer fibres
4.10.2.Polymer fibres - UHMwPE
4.10.3.Self reinforced polymers - introduction
4.10.4.Self reinforced polymers - main players
4.10.5.Global forecast of polymer fibres
4.11.Boron Fibre
4.11.1.Boron fibres - introduction
4.11.2.Boron fibres - laser chemical vapour deposition
5.HYBRID MATERIAL INVOLVING COMPOSITES
5.1.Hybrid parts - introduction
5.2.Fibre combination - introduction
5.3.Fibre combination - natural and carbon
5.4.Hybrid parts - fibre metal laminates
5.5.Core materials - overview and market forecast
5.6.Core materials - honeycomb: main players and SWOT analysis
5.7.Core materials - honeycomb: key innovations
5.8.Core materials - honeycomb: capacity expansions
5.9.Core materials - foams: main players and SWOT analysis
5.10.Core materials - foam: key innovations
5.11.Core materials - foam: ROHACELL
5.12.Core materials - resin infused
5.13.Core materials - hybrid materials and folded cores
5.14.Hybrid multi-material part - polymer overmolding
5.15.Hybrid multi-material part - metal overmolding
5.16.Hybrid multi-material part - manufacturing process
5.17.Composite - metal hybrid part: introduction
5.18.Composite surfaces - barrier and skin coat analysis
5.19.Composite surfaces - innovation for surface modifications
5.20.Composite adhesives - overview and new directions
5.21.Adhesion-free joining: laser technology
5.22.Adhesion-free joining: chemical processing
5.23.Composite - ceramic hybrid part
6.MULTIFUNCTIONAL COMPOSITES
6.1.Introduction
6.2.Structural health monitoring
6.3.Embedded sensors
6.4.Electrical conductivity
6.5.Energy harvesting and storage
6.6.Self healing polymer
6.7.Self healing ceramic
7.APPENDIX
7.1.Global forecast
7.2.Global application forecast
7.3.Carbon Fibre forecast
7.4.Glass fibre forecast
7.5.Polymer fibre forecast
7.6.Aramid fibre forecast
7.7.SiC fibre forecast
7.8.Ceramic fibre forecast
7.9.Natural fibre forecast
8.COMPANY PROFILES
8.1.Acellent Technologies
8.2.Advanced Carbon Products
8.3.Airborne
8.4.Alan Harper Composites
8.5.Audi
8.6.Cevotec
8.7.CIKONI
8.8.COI Ceramics Inc.
8.9.Composite Braiding
8.10.Composites Horizons
8.11.Composite Metal Technology Ltd
8.12.ELG Carbon Fibre
8.13.Far-UK
8.14.Free Form Fibers
8.15.Lantor
8.16.MEC Company
8.17.Msquare
8.18.NTPT
8.19.Oxford Advanced Surfaces
8.20.Pond
8.21.SHD Composites
8.22.Specialty Materials
8.23.TISICS Ltd

Report Statistics

-Slides260
-Companies23
-Forecasts to2027
-Last updateJan 2018
 

Downloads

pdf Document Webinar slides
pdf Document Sample pages