Automotive & Electric Vehicles Report

Unmanned Aerial Vehicles UAV (drones) will be a business of over $6 billion in 2027

Electric UAV Drones: Autonomous, Energy Independent 2017-2027

Business opportunities, technology roadmaps, market forecasts, players


 
Table of Contents
1.EXECUTIVE SUMMARY AND CONCLUSIONS
1.1.Purpose of this report
1.2.Definitions and comparison
1.2.1.Electric UAV types
1.2.2.Acronyms, market drivers and uses
1.3.Why electrify? What is the end game?
1.4.Why have autonomy?
1.5.Why seek autonomy of navigation, task and power together?
1.5.1.Benefits
1.5.2.Autonomy of navigation, task and energy usually happening first in the air
1.5.3.Perpetual drones
1.6.Electric UAV formats
1.7.Contrast non-electric UAVs
1.8.UAV systems
1.8.1.Anatomy
1.8.2.Military UAS system evolution to electric
1.9.Convergence of technologies and new challenges
1.10.Some operational, technical and ethical challenges of UAVs
1.11.Insurance challenges
1.12.Tightening legal constraints
1.13.UAV autonomy propositions in context of other autonomous vehicles
1.14.Companies in the drone value chain
1.14.1.Top drone company ranking Q3 2016 by interest not sales
1.15.Market forecasts
1.15.1.IDTechEx seven forecasting categories for electric UAV craft explained
1.15.2.2017: Year of disillusion when savvy investors see their chance
1.15.3.2018-2027 Many enduring successes for electric UAVs: excellent VC exits as large companies buy their way in
1.15.4.Total electric UAV market
1.15.5.IDTechEx forecasts for seven electric UAV categories 2017-2027 - Numbers
1.15.6.Total electric UAV market - discussion
1.15.7.Commercial drone-enabled revenue
1.15.8.Examples of drone retail pricing excluding system
1.15.9.IDTechEx agricultural robots and drones ten-year forecasts
1.15.10.Optimistic forecasts made before the 2016 industry shakeout may now be revised
1.15.11.Alternative views
1.15.12.Independent view of commercial and prosumer potential using different drone definition
1.16.Visit to Aerosense Tokyo - August 2017
1.17.Arctic Solar Drone
2.INTRODUCTION
2.1.Terminology and value chain
2.1.1.Drone and UAV
2.1.2.UAS
2.1.3.Value chain elements
2.2.Some potentially leading applications
2.2.1.Military, agriculture etc.
2.2.2.Upper atmosphere internet delivery, surveillance
2.3.Design of electric UAVs
2.4.Ducted fan gains share: Finnmeccanica
2.5.New principles of flight
2.6.Energy storage
2.6.1.Rapid change
2.6.2.Rated power vs energy stored by technology
2.6.3.The role of energy storage technologies in electric vehicles
2.6.4.EV battery impact
2.6.5.EV lithium battery pack price to 2030
2.6.6.Lithium-ion traction battery chemistry preferences
2.6.7.New Li technology maturity per market segment
2.6.8.Forecasts of energy density by type 2016-2028
2.6.9.Rapid scale-up with rapid change of product spells trouble
2.6.10.Safety warning
2.7.Electric motors and controls
2.7.1.Brushless outrunner motors
2.7.2.Coreless motors in general
2.7.3.Overall choices of traction motor for electric vehicles
2.7.4.Motor controls
2.7.5.Sensors, other controls and functions
2.8.Autonomy of navigation and task
2.8.1.Requirements
2.8.2.Definitions: degrees of autonomy, design methodology
2.8.3.Function specific level of autonomy: Texas A&M
2.8.4.Technology options
2.8.5.Example: enhancement of commercial multicopter for autonomy
2.8.6.Example: Skybotix
2.8.7.Autonomous UAVs for agriculture
2.8.8.Hyperspectral image sensors
2.8.9.Hyperspectral imaging and precision agriculture
2.8.10.Hyperspectral imaging in other applications
2.8.11.Hyperspectral imaging sensors on the market
2.8.12.Common multi-spectral sensors used with agricultural drones
2.8.13.GeoVantage
2.9.Swarming technology: Perdix
3.AUTONOMY OF UAV ENERGY: ENERGY INDEPENDENT VEHICLE EIV TECHNOLOGY
3.1.Overview and EIV drone
3.2.Solar Ship EIV helium inflatable fixed wing Canada
3.3.Upper Atmosphere Dual Aircraft Platform vs Solar Plane
4.4. EXAMPLES OF ELECTRIC UAVS IN ACTION
4.1.Agriculture
4.1.1.Overview
4.1.2.Aerial data collection - Satellite vs. plane vs drone mapping and scouting
4.1.3.Benefits of using aerial imaging in farming
4.1.4.Unmanned drones in rice field pest control in Japan
4.1.5.Unmanned drones and helicopters for field spraying
4.1.6.Unmanned agriculture drones on the market
4.1.7.Comparing different agricultural drones on the market
4.1.8.Regulation barriers coming down?
4.1.9.Agricultural drones: the emerging value chain
4.1.10.Core company information on key agricultural drone companies
4.2.Product delivery
4.2.1.Amazon, Zipline, Swiss Post, NUS
4.2.2.Zipline
4.2.3.Disposable drones for delivery
4.3.Surveying
4.4.UAVs for guidance
4.5.Tethered UAVs for endurance or power generation
4.5.1.Aerovironment, Elistair, Univ Southampton
4.5.2.Alphabet (Google) Makani tethered drone for electricity generation
4.5.3.TwingTec
4.6.Detail of energy independent drones
4.6.1.Northrop Grumman airship USA
4.6.2.Mitre DARPA airship USA
4.6.3.Lockheed Martin HALE-D airship USA
4.6.4.Dirisolar airship France
4.6.5.Turtle airship USA
4.6.6.Brunel solar powered autonomous aircraft
4.6.7.China Aerospace
5.COMPANY PROFILES
5.1.3D Robotics USA
5.2.AgEagle USA
5.3.Agribotix USA
5.4.Airinov France
5.5.DJI China
5.6.Eviation Aircraft
5.7.Festo Germany
5.8.Gamaya Switzerland
5.9.G-Force Japan
5.10.Headwall China
5.11.Hitec Multiplex Japan
5.12.LeddarTech USA
5.13.MicaSense USA
5.14.Novariant USA
5.15.Parrot France
5.16.Prospera Israel
5.17.Ruiven China
5.18.Scanse USA
5.19.Scanse USA
5.20.senseFly Switzerland
5.21.Sentra USA
5.22.Shadow Robotics UK
5.23.SpeIR USA
5.24.Syma China
5.25.Trimble USA
5.26.URSULA Agriculture UK
5.27.Walkera China