Off Grid Report

Electrically Active Smart Glass and Windows 2018-2028

Photovoltaic, electrochromic, suspended particle, LC, transparent OLED, BIPV, structural electronics

Electrically active transparent smart glass will be a $6.5 billion market in 2028, growing rapidly
 
The new 200 page IDTechEx report, "Electrically Active Smart Glass and Windows 2018-2028" observes that electrically active see-through glass is an idea whose time has come. The main characteristics of active smart glass are that it involves an electrical interface and is controlled manually by the user or automatically with a sensor, remote control device or integrated building control system. It is commercialized in various ways, particularly in architectural, automotive, aerospace and marine applications. The report is intended for investors, vehicle and building designers and purchasers, developers, manufacturers and other interested parties. It was researched globally by PhD level multilingual analysts, it will also assist those intending to manufacture, sell or use such materials and units and the devices such as windows and systems incorporating them.
 
"Electrically Active Smart Glass and Windows 2018-2028" explains why greatest adoption today is for controlled shading and these versions are mainly electrochromic but the largest sector in 2028 will be electricity generating windows. Active smart glass powers the megatrend of structural electronics replacing tired old components-in-a-box designs. It replaces drapes and ugly solar panels that are an afterthought. It saves space, weight and cost while improving reliability, ruggedness and life of electrics, electronics and active optics. It makes buildings far more efficient and pleasant to use. Such smart glass will even facilitate the megatrend to energy independent vehicles by creating electricity from the ever larger windows of land, water and air vehicles by providing privacy, energy conservation, elimination of pollution and sun protection on demand.
 
The Executive Summary and Conclusions is sufficient in itself for those in a hurry to grasp where the market and technology is headed, why and who is involved. It is followed by an Introduction covering the needs of the primary users - the building and vehicle industries - and progress in achieving these. The specific uses and trends by region across the world are covered. For example, electrically active windows started with embedded demister, de-icer and antenna patterns and progressed to the darken-on-demand windows popular in airliners, superyachts, premium cars and many buildings. Next, electricity creating photovoltaic windows are increasingly seen in buildings and keenly awaited for mainstream vehicles.
 
Chapter 3 drills down into the technologies by format and chemistry and Chapter 4 further explores the important aspect of translucent and transparent photovoltaics and thermoelectrics. Among the topics explained here with many illustrations are Building Integrated Photovoltaics BIPV, Organic Photovoltaics OPV, Transparent Luminescent Solar Concentrators TLSC and light guiding solar concentrators all for windows.
 
Chapters 5 and 6 cover what is currently the largest market: shading technologies using electrically smart glass with subsections on the different technology options including pros and cons and latest advances. Chapter 7 covers Voltage Responsive or Electrostatic Oriented Materials in detail and Chapter 8 gives the detail on Suspended Particle Technology SPT for active shading. Chapter 9 explains OLED transparent lighting and displays - glamorous but unsuccessful as yet: we explain why. Throughout, a host of examples of commercial products and new research breakthroughs are illustrated.
 
The new IDTechEx report, "Electrically Active Smart Glass and Windows 2018-2028" primarily concerns the commercialisation and future of electrically active inorganic glass we call smart glass. That includes putting it in context with passive glass optically responding to heat and light and transparent electrically active polymers in windows and combinations as well.
 
With many original infographics, tables and images, IDTechEx presents both the technology and the markets in an easily absorbed manner. It uses facts-based analysis to create roadmaps, forecasts and insights. The primary coverage is transparent photovoltaics producing electricity; electronic shades using electrically activated liquid crystals, suspended particle devices and electrochromics and thirdly structural OLED lighting. However, many other options are also covered such as the thermoelectric creation of electricity to power sensors in translucent glass. Passive darkening technology is compared with active.
 
Building skins with tunable properties have been the architects' dream for decades. Such skins will alter the very concept of a building into that of an entity operating in harmony with nature rather as, in most cases, in stark opposition to nature and requiring energy guzzling measures. The report gives ten year forecasts for the various technologies comprising a market of around $6.5 billion in 2028 and a lot more thereafter. It explains why this is mainly concerned with new buildings and new vehicles, with some opportunity for premium pricing, and different potential for different functions.
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
Further information
If you have any questions about this report, please do not hesitate to contact our report team at research@IDTechEx.com or call one of our sales managers:
 
Americas (US): +1 617 577 7890
Europe (UK): +44 (0)1223 812300
Korea: +82 31 263 7890
Rest of Asia (Japan): +81 90 1704 1184