Emerging Materials and Devices Report

Stretchable and Conformal Electronics 2017-2027

Technologies, materials & components, markets and 10-year market forecasts

Brand new for 2017
The market for materials and components for stretchable electronics will be over $600m by 2027
 

Order now

Table of Contents
1.EXECUTIVE SUMMARY
1.1.The evolving form factor of electronics
1.2.Technology Readiness Chart: by technology
1.3.Number of products containing stretchable electronics, by market sector (2017-2027)
1.4.Number of products containing stretchable electronics, by product type (2017-2027)
1.5.Sales volumes of stretchable components (2017-2027)
1.6.Revenue from stretchable materials & components, (2017-2027)
1.7.Stretchable electronics in e-textiles
2.INTRODUCTION
2.1.Definitions and inclusions
2.2.Stretchable electronics: Where is the money so far?
2.3.Why do we need stretchable electronics?
2.3.1.Characterising a stretchable substrate
2.3.2.Conformal electronic functionality on custom shapes
2.3.3.Smart skin
2.4.Megatrends
2.5.The megatrend towards ubiquitous electronics
2.6.Our ubiquitous electronics will be stretchable
2.7.Technology Readiness Chart: by technology
3.STRETCHABLE ELECTRONIC TEXTILES (E-TEXTILES)
3.1.Electronic Textiles (E-Textiles)
3.2.Most conductive fibres are not stretchable (with exceptions)
3.3.Examples of traditional conductive fibres
3.4.Academic exceptions:
3.4.1.UT, Dallas: SEBS / NTS stretchable wires
3.4.2.Sungkyunkwan University - PU & Ag nanoflowers
3.4.3.MIT: Stretch sensors using CNTs on polybutyrate
3.5.Yarns for stretchable electronics
3.6.Commercial wire-based stretchable yarns
3.7.Hybrid yarns can be conductive, elastic and comfortable
3.8.Conductive yarns from Natural Fibre Welding
3.9.Stretchable electronic fabrics
3.10.Examples of stretchable electronic fabric components
3.11.Stretchable fabrics in e-textiles today
3.12.Design trends to accommodate stretchable electronics
4.STRETCHABLE CONDUCTIVE INKS
4.1.Stretchable inks: general observations
4.2.Stretchable conductive inks on the market (Jujo Chemical, Ash Chemical, EMS/Nagase, Toyobo, DuPont, Henkel, Panasonic, Taiyo, Cemedine, and so on)
4.3.Performance of stretchable conductive inks
4.4.Evolution and improvements in performance of stretchable conductive inks
4.5.The role of particle size and resin in stretchable inks
4.6.The role of pattern design in stretchable conductive inks
4.7.Washability for stretchable conductive inks
4.8.Encapsulation choice for stretchable inks
4.9.The role of the encapsulant in supressing resistivity changes
4.10.The role of a common substrate for stretchable inks in e-textiles
4.11.Graphene-based stretchable conductive inks
4.12.Graphene heaters in electronic textiles
4.13.Examples of stretchable conductive inks in e-textiles
4.14.Examples of e-textile sports products made using conductive yarns
4.15.PEDOT-impregnated fabric for e-textiles
4.16.CNT heaters for photovoltaic defrosting
5.IN-MOLD CONDUCTIVE INKS
5.1.In-mold electronics: processes and requirements
5.2.Stretchable conductive inks for in-mold electronics
5.3.In-mold electronics: a multi-step process
5.4.Target applications for in-mould electronics
5.5.In-mold conductive inks on the market
5.6.Product examples using in-mold conductive inks
5.7.Printed and thermoformed overhead console
6.STRETCHABLE AND IN-MOLD TRANSPARENT CONDUCTIVE FILM
6.1.Carbon nanotube transparent conductive films: performance of commercial films on the market
6.2.Stretchable carbon nanotube transparent conducting films
6.3.Product examples of carbon nanotube in-mold transparent conductive films
6.4.PEDOT transparent conductive films
6.5.Product examples of in-mold and stretchable PEDOT:PSS transparent conductive films
6.6.Metal mesh transparent conductive films: operating principles and characteristics
6.7.Methods of making metal mesh transparent conductive films: hybrid printing and silver halide patterning
6.8.Methods of making metal mesh transparent conductive films: direct printing and embossing
6.9.Methods of making metal mesh transparent conductive films: photolithography
6.10.In-mold and stretchable metal mesh transparent conductive films
6.11.Stretchable silver nanowire transparent conductive films
6.12.Other in-mold transparent conductive film technologies
7.SUBSTRATES FOR STRETCHABLE ELECTRONICS
7.1.Substrate choice for stretchable electronics
7.2.Panasonic's stretchable insulating resin film with electronic circuits
8.STRETCHABLE SENSORS
8.1.Introduction
8.2.High-strain sensors (capacitive)
8.3.Use of dielectric electroactive polymers (EAPs)
8.4.Players with EAPs
8.4.1.Parker Hannifin
8.4.2.Stretchsense
8.4.3.Bando Chemical
8.5.Other force sensors (capacitive & resistive)
8.6.Force sensor examples:
8.6.1.Polymatech
8.6.2.Sensing Tex
8.6.3.Vista Medical
8.6.4.InnovationLab
8.6.5.Tacterion
8.6.6.Yamaha and Kureha
8.6.7.BeBop Sensors
8.7.Stretchability within skin patch sensors
8.8.Example: Stretchability in chemical sensors
8.9.Example: Stretchability in body-worn electrodes
8.10.Academic examples:
8.10.1.UNIST, Korea
8.10.2.Stanford University
8.10.3.Bio-integrated electronics for cardiac therapy
8.10.4.Instrumented surgical catheters using electronics on balloons
8.10.5.Chinese Academy of Sciences
9.THERMOFORMED POLYMERIC ACTUATOR
9.1.Thermoformed polymeric actuator?
10.ENERGY STORAGE: STRETCHABLE BATTERIES AND SUPERCAPACITORS
10.1.Realization of batteries' mechanical properties
10.2.Material-derived stretchability
10.3.Comparison between flexible and traditional Li-ion batteries
10.4.Device-design-derived stretchability
10.5.Cable-type battery developed by LG Chem
10.6.Electrode design & architecture: important for different applications
10.7.Large-area multi-stacked textile battery for flexible and rollable applications
10.8.Stretchable lithium-ion battery — use spring-like lines
10.9.Foldable kirigami lithium-ion battery developed by Arizona State University
10.10.Fibre-shaped lithium-ion battery that can be woven into electronic textiles
10.11.Fibre-shaped lithium-ion battery that can be woven into electronic textiles (continued)
10.12.Stretchable Supercapacitors
10.13.Stretchable energy harvesting
10.14.Stretchable capacitive energy harvesting upto 1 kW?
10.15.Stretchable triboelectric energy harvesting
10.16.Piezoelectric nano-generators
11.STRETCHABLE OR EXTREMELY FLEXIBLE CIRCUITS BOARDS
11.1.Stretchable or extremely flexible circuit boards (Reebok)
11.2.Examples of thin and flexible PCBs in wearable and display applications
11.3.Examples of thin and flexible PCBs in various applications
11.4.Printed pliable and stretchable circuit boards
11.5.Stretchable meandering interconnects
11.6.Stretchable printed circuits boards
11.7.Examples of fully circuits on stretchable PCBs
11.8.Stretchable Electronics from Fraunhofer IZM
11.9.Stretchable actually-printed electronic circuits/systems
11.10.Island approach to high-performance stretchable electronics
11.11.Examples
12.STRETCHABLE DISPLAYS
12.1.Stretchable displays
12.2.Hyper-stretchable HLEC display
12.3.Stretchable electrophoretic display
13.STRETCHABLE TRANSISTORS
13.1.Stretchable thin film transistors
13.2.Crystalline stretchable high-performance circuits
13.3.Examples of crystalline stretchable high-performance circuits
13.4.Latest progress with electronic skin
13.5.Artificial skin sensors based on stretchable silicon
13.6.Stretchable LED lighting arrays
13.7.Ultra-thin flexible silicon chips
13.8.Ultra thin silicon wafers: top-down thinning
13.9.Ultra thin silicon wafers: Silicon-on-Insulator
13.10.Ultra thin silicon wafers: ChipFilmTM approach
14.MARKETS
14.1.Key markets for stretchable electronics
14.2.Comparison by product type
14.3.Skin patches
14.4.Apparel
14.5.Other textile applications
14.6.Medical devices
14.7.Consumer electronic devices
14.8.Market pilots with early prototypes
14.9.The EC STELLA project
14.10.Pressure monitoring in an insole
14.11.Compression garments
14.12.Wireless activity monitor
15.FORECASTS
15.1.Stretchable electronics in e-textiles
15.2.Number of products containing stretchable electronics, by market sector (2017-2027)
15.3.Number of products containing stretchable electronics, by product type (2017-2027)
15.4.Sales volumes of stretchable components (2017-2027)
15.5.Revenue from stretchable materials & components, (2017-2027)
15.6.Revenue breakdown: stretchable conductive materials, including inks, textiles & polymers (2017-2027)
15.7.Revenue breakdown: mold inks and TCF (2017-2027)
15.8.Revenue breakdown: stretchable sensors, including dielectric elastomer, resistive displacement, textile & other (2017-2027)
15.9.Revenue breakdown: stretchable energy storage and energy harvesting (2017-2027)
15.10.Revenue breakdown: emerging stretchable components, including actuators, logic and displays (2017-2027)
16.COMPANY PROFILES AND INTERVIEWS
16.1.adidas
16.2.Aiq Smart Clothing
16.3.Bebop Sensors
16.4.Cityzen Sciences
16.5.Directa Plus
16.6.Dupont Advanced Materials
16.7.Eurecat - Cetemmsa
16.8.Footfalls And Heartbeats
16.9.Forster Rohner Ag
16.10.Fujikura Kasei Co., Ltd.
16.11.Henkel
16.12.Henkel - Conductive Adhesives
16.13.Hexoskin
16.14.Infinite Corridor Technology
16.15.Kh Chemicals
16.16.MC10
16.17.Nagase America Corporation
16.18.Poly-Ink
16.19.Polymatech America Co., Ltd.
16.20.Southwest Nanotechnologies, Inc.
16.21.Stretchsense
16.22.Wearable Life Science
16.23.Xerox Research Centre Of Canada (Xrcc)
17.APPENDIX
17.1.List of 25 universities mentioned in this report
17.2.List of 87 companies mentioned in this report
18.COMPANY INTELLIGENCE BASED ON PRIMARY FIRST-HAND INTERVIEWS
18.1.Agfa
18.2.Alphaclo
18.3.Asahi Kasei
18.4.Ash Chemical
18.5.Bainisha
18.6.Bando Chemical
18.7.Bebop Sensors
18.8.Brewer Science
18.9.Canatu
18.10.Cemedine
18.11.Chasm
18.12.Clothing+
18.13.DuPont
18.14.EMS
18.15.EnFlux
18.16.FEET ME
18.17.Flexeed
18.18.Forster Rohner Textile Innovations
18.19.Fraunhofer IZM
18.20.Fujifilm
18.21.Fujikura Kasei
18.22.Henkel
18.23.Heraeus
18.24.Hexoskin
18.25.Hitachi Chemical
18.26.Holst Centre
18.27.Imperial College London
18.28.Innovation Lab
18.29.Jujo Chemical
18.30.Kureha
18.31.MC10
18.32.Mektec
18.33.Molex
18.34.Nagase
18.35.NC State University
18.36.NRCC
18.37.Ohmatex
18.38.Panasonic
18.39.Parker Hannifin
18.40.Piezotech
18.41.Polymatech
18.42.Sabic
18.43.Satosen
18.44.Sensing Tex
18.45.Seoul National University
18.46.Showa Denko
18.47.Soongsil University
18.48.Stretchsense
18.49.Tacterion
18.50.Tactotek
18.51.Taiyo Ink
18.52.Textronics
18.53.T-Ink
18.54.Toray Industries
18.55.Toyobo
18.56.University of Tokyo
18.57.Vista Medical
18.58.Wearable Life Sciences
18.59.Yamaha