1. | EXECUTIVE SUMMARY |
1.1. | The IR Spectrum and Applications |
1.2. | IR for Autonomous Driving |
1.3. | SWOT - IR Cameras/Sensors |
1.4. | NIR Imaging for Automotive: In-Cabin Sensing |
1.5. | Market Size Forecast: NIR Cameras (US$ Millions): 2020-2035 |
1.6. | Automotive In-Cabin Sensing ToF Imaging Sensors - Summary |
1.7. | Bill of Materials - ToF Camera |
1.8. | Yearly Market Size Forecast for In-Cabin ToF Cameras: 2020-2035 |
1.9. | Key Takeaways: SWIR for Automotive |
1.10. | SWIR Technology Feature Summary |
1.11. | SWIR Sensors for Automotive Applications |
1.12. | SWIR Imaging for ADAS and Autonomous Vehicles |
1.13. | Key Players in SWIR |
1.14. | Future Outlook for SWIR |
1.15. | SWIR Camera Yearly Market Size 2020-2035 |
1.16. | LWIR in Automotive |
1.17. | Summary of NHTSA Ruling |
1.18. | Some AEB Systems Might be Good Enough Already |
1.19. | Thermal Performance and Pixels |
1.20. | Microbolometer Suppliers and Materials |
1.21. | The Optics Required for a LWIR Camera |
1.22. | Chalcogenide Glass Suppliers |
1.23. | Cost Analysis of a Typical Thermal Camera |
1.24. | LWIR for ADAS |
1.25. | LWIR Imaging in DMS: Advantages and Disadvantages |
1.26. | Teledyne FLIR Summary |
1.27. | Summary of Microbolometer, Camera, and Tier-One Suppliers |
1.28. | Thermal Camera Placement |
1.29. | Yearly Global Market Size for Automotive LWIR 2020-2035 |
1.30. | Yearly Global Market Size of IR Technologies in Automotive 2020-2035 |
2. | NIR IMAGING FOR IN-CABIN MONITORING |
2.1. | Introduction and NIR Cameras |
2.1.1. | Segmenting the Electromagnetic Spectrum |
2.1.2. | SWOT - IR Cameras/Sensors |
2.1.3. | Infrared (IR) in DMS - Overview |
2.1.4. | IR VS VCSEL Light Sources (1) |
2.1.5. | IR VS. VCSEL Light Sources (2) |
2.1.6. | Potential Integration Areas |
2.1.7. | VCSEL Summary |
2.1.8. | LEDs Versus VCSEL |
2.1.9. | Applications of IR Imaging - 2D and 3D |
2.1.10. | Structured Light |
2.1.11. | Performance Indicators |
2.1.12. | 2D RGB Cameras to IR LED Imaging |
2.1.13. | Requirements of IR LEDs and VCSELs for DMS and OMS |
2.1.14. | NIR + Thermal Camera - Next2U |
2.1.15. | Overview of Leading Players in VCSEL |
2.1.16. | Acquisitions |
2.1.17. | Case Study: Seeing Machines (1) |
2.1.18. | Case Study: Seeing Machines (2) |
2.1.19. | Case Study: Seeing Machines (3) |
2.1.20. | NIR Sensors |
2.1.21. | NIR LED Drivers |
2.1.22. | Average NIR Camera Per Passenger Car: 2020-2035 |
2.1.23. | Forecast: Cost per IR Camera for DMS: 2020-2035 |
2.2. | ToF Cameras |
2.2.1. | ToF Camera Teardowns |
2.2.2. | Magna - DMS Integrated in Rear-View Mirror |
2.2.3. | Melexis - 3D ToF Camera |
2.2.4. | Valeo |
2.2.5. | AMS Osram |
2.2.6. | Automotive In-Cabin Sensing ToF Imaging Sensors - Summary |
2.2.7. | Occupant Monitoring System (OMS): Cameras |
2.2.8. | PreAct - Flash LiDAR for OMS |
2.2.9. | LG Innotek - ToF Camera for DMS |
2.2.10. | Terabee |
2.2.11. | Summary of 3D Imaging Systems |
2.2.12. | Bill of Materials - ToF Camera |
2.3. | Forecast for NIR |
2.3.1. | Yearly Volume Forecast by ToF and IR Cameras: 2020-2035 |
2.3.2. | Market Size Forecast: NIR Cameras (US$ Millions): 2020-2035 |
2.3.3. | Yearly Market Size Forecast for In-Cabin ToF Cameras: 2020-2035 |
2.3.4. | Average Number of ToF Camera per Vehicle - Forecast 2020-2034 |
3. | SHORT WAVELENGTH INFRARED (SWIR) FOR AUTOMOTIVE |
3.1. | SWIR Technology Analysis |
3.1.1. | Electromagnetic Spectrum |
3.1.2. | Short-wave Infrared Spectrum |
3.1.3. | Value Propositions of SWIR Imaging |
3.1.4. | SWIR Comparison with Other IR Technologies |
3.1.5. | Introduction to SWIR Detection Technologies |
3.1.6. | Manufacturing Comparison of SWIR Sensors |
3.1.7. | SWIR Technology Feature Summary |
3.1.8. | Material Choices For Infrared Sensors |
3.1.9. | InGaAs for Incumbent Image Sensors |
3.1.10. | Sony's SenSWIR Technology |
3.1.11. | Issue with Current Infrared Image Sensors |
3.1.12. | TriEye's SEDAR platform |
3.1.13. | Organic Photodetectors (OPDs) |
3.1.14. | Hybrid QD-on-CMOS Image Sensor |
3.1.15. | Technology Comparison of Carious SWIR Image Sensor Technologies |
3.1.16. | Value Propositions of SWIR Imaging in Automotive |
3.1.17. | SWIR Sensors for Automotive Applications |
3.1.18. | SWIR Imaging for ADAS and Autonomous Vehicles |
3.1.19. | SWIR Imaging for Road Condition Sensing |
3.1.20. | SWIR Imager Application Summary |
3.1.21. | SWIR Imaging for Temperature Difference Measurement |
3.1.22. | Key Players in SWIR |
3.1.23. | Challenges and Solutions |
3.1.24. | Key Takeaways: SWIR for Automotive |
3.1.25. | Future Outlook for SWIR |
3.2. | Forecast for SWIR |
3.2.1. | SWIR Camera Unit Forecast 2020-2035 |
3.2.2. | SWIR Camera Yearly Market Size 2020-2035 |
4. | LONG WAVE INFRARED (LWIR) FOR AUTOMOTIVE |
4.1. | Regional Regulations |
4.1.1. | NHTSA Announcement: May 2024 |
4.1.2. | Summary of NHTSA Ruling |
4.1.3. | Some AEB Systems Might be Good Enough Already |
4.1.4. | How Dark is 0.2 lux? |
4.1.5. | Low Visibility Testing Standards |
4.1.6. | Response of Companies - OEMs |
4.1.7. | Lidar as a Potential Solution |
4.1.8. | Classifications of Night Vision? |
4.1.9. | Comparison |
4.1.10. | EU Vision Zero |
4.1.11. | SAFE-UP |
4.1.12. | SAFE-UP (2) |
4.1.13. | China: C-NCAP |
4.2. | Working Principles of LWIR |
4.2.1. | Different Types of Thermal Detectors |
4.2.2. | LWIR General Process |
4.2.3. | Key Components of a Thermal Camera |
4.2.4. | Microbolometer Structure and Geometry |
4.2.5. | LWIR ROIC |
4.2.6. | Pixel Pitch |
4.2.7. | Image Quality Dependency on Pixel Pitch |
4.2.8. | Thermal Performance and Pixels |
4.2.9. | Pixel Pitch and Frame Rate |
4.2.10. | Image Processing |
4.3. | Comparing VOx, α-Si, BST, and others |
4.3.1. | Sensor Materials and Technologies for Uncooled Detectors |
4.3.2. | Uncooled Sensor Material Choice Summary |
4.3.3. | Cooled Quantum Detectors |
4.3.4. | Type II Super Lattice for LWIR Detectors |
4.3.5. | Cooling Requirements of Thermal Cameras |
4.4. | LWIR Optics Choices |
4.4.1. | IR Transparent Materials |
4.4.2. | What to Look For in Optical Material |
4.4.3. | Germanium Alternatives |
4.4.4. | Thermal Imaging Lens Materials |
4.4.5. | The Optics Required for a LWIR Camera |
4.5. | LWIR for In-Cabin Sensing |
4.5.1. | Driver Monitoring Systems |
4.5.2. | NIR + Thermal Camera - Next2U |
4.5.3. | Eyeris |
4.5.4. | LWIR for Driver Monitoring Systems |
4.5.5. | LWIR Imaging in DMS: Advantages and Disadvantages |
4.6. | LWIR for ADAS and Autonomous Driving |
4.6.1. | IR for Autonomous Driving |
4.6.2. | Spectral Bands for ADAS |
4.6.3. | LWIR for ADAS |
4.6.4. | LWIR for ADAS: Advantages and Disadvantages |
4.6.5. | Comparing ADAS System Ranges and Resolution |
4.6.6. | How Important is Frame Rate? |
4.6.7. | Human vs ADAS Stopping Distance |
4.6.8. | Monocular, Binocular, ToF |
4.6.9. | Monocular, Binocular, TOF (2) |
4.7. | Other LWIR-based Thermal Sensing Technologies and Use Cases in Automotive |
4.7.1. | Introduction |
4.7.2. | Thermal Sensors for Automotive Air Conditioning Control |
4.7.3. | Temperature monitoring for electric vehicles batteries continues to command interest in printed temperature sensing |
4.7.4. | Monitoring Swelling Events in Electric Vehicle Batteries using Hybrid Printed Temperature and Force Sensors |
4.7.5. | Other Applications and Market Outlook for Printed Temperature Sensors in Automotives |
4.8. | Current Market and Technology |
4.8.1. | Microbolometer Suppliers and Materials |
4.8.2. | Where is the Thermal Camera Market? |
4.8.3. | Night Vision in Japan |
4.8.4. | Night Vision Global Adoption |
4.8.5. | Inside a Vehicle |
4.8.6. | Key Components of a Thermal Camera |
4.8.7. | Cadillac DeVille 2000: Chopper Wheel |
4.8.8. | Cadillac DeVille 2000: Camera Casing |
4.8.9. | Cadillac DeVille 2000: FPA and interior |
4.8.10. | The Halo Effect of Barium Strontium Titanate |
4.8.11. | Honda Legend 2004 |
4.8.12. | Honda Legend 2004: Stereovision for Distance Measurement |
4.8.13. | Audi 2008: Introduction and Camera Exterior |
4.8.14. | Audi 2008: Lens Back |
4.8.15. | Audi 2008: Back Circuit Board |
4.8.16. | Audi 2008: Shutter and Sensor |
4.8.17. | Cadillac Escalade 2021: Introduction |
4.8.18. | All Cadillac Night Vision Models |
4.8.19. | Autoliv, Veoneer and Magna Night Vision Generations |
4.9. | New LWIR Technology Developments for Automotive |
4.9.1. | Thermal Cameras in Sensor Fusion |
4.9.2. | Thermal Camera Placement |
4.9.3. | Shutterless Thermal Cameras |
4.9.4. | AGC: LWIR Transparent Windshield |
4.9.5. | AGC: Advantages Over the Front Grille |
4.9.6. | Saint-Gobain Sekurit: FIR Transparent Windshield |
4.9.7. | Teledyne FLIR Stereo Vision |
4.9.8. | Foresight |
4.9.9. | Foresight |
4.9.10. | Hitachi Astemo Patent |
4.9.11. | Cost Analysis of a Typical Thermal Camera |
4.9.12. | Chalcogenide Glasses: AMTIR and GASIR |
4.9.13. | Chalcogenide Glass Suppliers |
4.10. | Thermal Camera Use Cases |
4.10.1. | NOPTIC |
4.10.2. | Teledyne FLIR and ADASTEC |
4.10.3. | Teledyne FLIR and Plus |
4.10.4. | Teledyne FLIR: Other Partnerships |
4.10.5. | Valeo and Teledyne FLIR |
4.10.6. | Teledyne FLIR Summary |
4.10.7. | Raytron Technology: iRay and InfiRay |
4.10.8. | AdaSky |
4.10.9. | AdaSky and Gentex |
4.10.10. | Lynred |
4.10.11. | OWL Autonomous Imaging |
4.10.12. | OWL Autonomous Imaging (2) |
4.10.13. | Summary of Microbolometer, Camera, and Tier-One Suppliers |
4.11. | Forecasts for LWIR |
4.11.1. | Units Sales Forecast of Thermal Cameras in the US 2020-2035 |
4.11.2. | Units Sales Forecast of Thermal Cameras in Europe (EU + UK + EFTA) 2020-2035 |
4.11.3. | Units Sales Forecast of Thermal Cameras in China 2020-2035 |
4.11.4. | Units Sales Forecast of Thermal Cameras in Japan 2020-2035 |
4.11.5. | Units Sales Forecast of Thermal Cameras in the Rest of the World 2020-2035 |
4.11.6. | Yearly Global Market Size for Automotive LWIR 2020-2035 |
4.11.7. | Yearly Global Market Size of IR Technologies in Automotive 2020-2035 |
5. | FORECASTS AND MARKETS |
5.1. | Forecast Methodology |
5.2. | Average NIR Camera Per Passenger Car: 2020-2035 |
5.3. | Forecast: Cost per IR Camera for DMS |
5.4. | Market Size Forecast: NIR Cameras (US$ Millions): 2020-2035 |
5.5. | Bill of Materials - ToF Camera |
5.6. | Yearly Market Size Forecast for In-Cabin ToF Cameras: 2020-2035 |
5.7. | SWIR Camera Unit Forecast 2020-2035 |
5.8. | SWIR Camera Yearly Market Size 2020-2035 |
5.9. | Cost Analysis of a Typical Thermal Camera |
5.10. | Yearly Global Market Size for Automotive LWIR 2020-2035 |
5.11. | Unit Sales of IR Technologies in Automotive Forecast 2020-2035 |
5.12. | Yearly Global Market Size of IR Technologies in Automotive 2020-2035 |
6. | PROFILES |
6.1. | ATT (Advanced Thermal Technologies) (2023) |
6.2. | ATT (Advanced Thermal Technologies) (2024) |
6.3. | Eyeris |
6.4. | Foresight Automotive |
6.5. | Fraunhofer FEP |
6.6. | Jungo Connectivity |
6.7. | Mobileye |
6.8. | Mobileye: ADAS & Autonomy Computation |
6.9. | Mobileye: Automotive Radar |
6.10. | Mobileye: Improving ADAS with REM |
6.11. | Next2U |
6.12. | Nodar: Untethered Stereo Camera With LiDAR-Like Performance |
6.13. | OmniVision Technologies |
6.14. | Owl AI: Long-Wave Infrared for Automotive Markets |
6.15. | Owl Autonomous Imaging |
6.16. | Seeing Machines |
6.17. | Sensrad |
6.18. | ST Microelectronics |
6.19. | Subaru |
6.20. | SWIR Vision Systems |
6.21. | Teledyne FLIR |
6.22. | TriEye: SWIR for ADAS (2022) |
6.23. | TriEye: SEDAR Platform (2023) |
6.24. | Valeo: ADAS and LiDAR |
6.25. | Valeo: Heads-Up Display (HUD) |
6.26. | Veoneer (Qualcomm) |