1. | EXECUTIVE SUMMARY |
1.1. | The scope of this report |
1.2. | Who should read this report? |
1.3. | Research methodology |
1.4. | Why is the lithium metal battery market interesting? |
1.5. | Battery anode materials discussion |
1.6. | Battery anode materials discussion: Silicon |
1.7. | High energy Li-ion anode technology overview |
1.8. | The power of lithium metal |
1.9. | Challenges of lithium metal: Dendrite formation |
1.10. | Lithium metal: Pressure, temperature and charge-discharge protocols |
1.11. | Lithium metal: Solutions and additives |
1.12. | Lithium metal electrolyte choice: Solid-state vs liquid |
1.13. | Lithium metal cathode choice: NMC, LFP and sulfur |
1.14. | Lithium metal technology benchmarking |
1.15. | Lithium metal for electric vehicles |
1.16. | Lithium metal for unmanned aerial vehicles (UAVs) |
1.17. | Lithium metal for consumer electronics |
1.18. | Lithium metal for satellites (LEO, GEO and Starlink) |
1.19. | Lithium metal application market conclusions |
1.20. | Lithium metal development in different regions |
1.21. | Lithium metal players |
1.22. | Forecast methodology |
1.23. | Global lithium metal battery capacity: 2025-2035 |
1.24. | Global lithium metal battery market: 2025-2035 |
1.25. | Lithium metal market proportions for 2035 |
1.26. | Key takeaways for the lithium metal battery market |
1.27. | Access More With an IDTechEx Subscription |
2. | LITHIUM METAL ANODES: INTRODUCTION AND PLATING SOLUTIONS |
2.1. | Anode choices in lithium-ion batteries |
2.2. | High energy Li-ion anode technology overview |
2.3. | Lithium metal anodes - early failures |
2.4. | Understanding energy density |
2.5. | Lithium plating |
2.6. | Lithium plating illustration |
2.7. | The effect of current density on dendrite formation |
2.8. | Effects of pressure on void formation and lithium plating |
2.9. | Effects of temperature on void formation and lithium plating |
2.10. | Charge-discharge asymmetry effects on degradation |
2.11. | Pressure can lower energy density |
2.12. | Separator layers |
2.13. | Mechanical blocking |
2.14. | Ion transport regulation |
2.15. | Deposition regulation |
2.16. | Current collector modification |
3. | LITHIUM METAL FOIL SUPPLY |
3.1. | Impact of Li-metal anodes on lithium demand |
3.2. | Traditional lithium sources |
3.3. | Direct lithium extraction |
3.4. | Lithium recycling |
3.5. | Blue Solutions - recycling chain |
3.6. | Recycling proposed by Blue Solutions |
3.7. | Lithium metal recycling from Blue Solutions |
3.8. | The need for thin and cheap lithium foils |
3.9. | Alternative methods for foil creation |
3.10. | Comparison of methods |
3.11. | Li-S lithium foil production |
3.12. | Li-metal |
3.13. | Pure Lithium Corporation |
3.14. | Pure Lithium's Li-foil electrode production |
3.15. | Arcadium Lithium - LIOVIX® |
3.16. | LIOVIX® performance and characteristics |
4. | LIQUID ELECTROLYTE LITHIUM METAL |
4.1. | Liquid electrolytes |
4.2. | SES AI |
4.3. | SES AI batteries |
4.4. | SES AI - use of artificial intelligence |
4.5. | Sion Power |
4.6. | Sion Power technology |
4.7. | Sepion Tech |
4.8. | Feon Energy |
4.9. | Cuberg/Northvolt |
4.10. | Liquid electrolyte lithium metal chemistry analysis |
5. | ANODE-LESS LITHIUM METAL |
5.1. | Anode-less design |
5.2. | Anode creation through charging |
5.3. | A lack of excess - lifetime cycling challenges |
5.4. | Cathode choice |
5.5. | Anode-less solid-state batteries |
5.6. | QuantumScape |
5.7. | Ensurge MicroPower |
5.8. | Samsung |
5.9. | Dual-chemistry battery systems |
5.10. | ONE - Gemini |
5.11. | Anode-less lithium metal chemistry analysis |
6. | SOLID-STATE WITH LITHIUM METAL |
6.1. | Solid electrolytes |
6.2. | Classifications of solid-state electrolytes |
6.3. | Popular solid-state battery cell choices |
6.4. | History of solid-state batteries |
6.5. | Solid-state electrolytes |
6.6. | Requirements for solid-state electrolytes with multifunctions |
6.7. | Value propositions of solid-state batteries |
6.8. | Current electrolyte challenges and possible solution |
6.9. | Solid-state electrolyte chemistry analysis |
7. | LITHIUM-SULFUR |
7.1. | Lithium-sulfur batteries: An introduction |
7.2. | Operating principle of Li-S |
7.3. | Li-S advantages and use cases |
7.4. | Polysulfide shuttle |
7.5. | Alternative electrolytes |
7.6. | Selective membranes for polysulfide shuttle inhibition |
7.7. | Cathode swelling forces |
7.8. | Expansion-tolerant cathode architectures |
7.9. | Binder-free architectures |
7.10. | Solutions to Li-S challenges |
7.11. | NexTech Batteries |
7.12. | Li-S Energy |
7.13. | Graphene Batteries AS |
7.14. | Zeta Energy |
7.15. | theion |
7.16. | Lyten |
7.17. | Gelion |
7.18. | LG Chem Li-S IP |
7.19. | Lithium-sulfur companies |
7.20. | Value proposition of Li-S batteries |
7.21. | What markets exist for lithium sulphur batteries? |
7.22. | What markets exist for lithium sulphur batteries? |
7.23. | Li-S cost structure |
7.24. | Li-S material intensity |
7.25. | Li-S cost calculation |
7.26. | Li-S cost comparisons |
7.27. | Lithium sulfur chemistry analysis |
7.28. | Concluding remarks on Li-S |
8. | LITHIUM-AIR |
8.1. | Lithium-air batteries: An introduction |
8.2. | Basic design |
8.3. | Air vs oxygen |
8.4. | Pore clogging |
8.5. | Electrolyte choice |
8.6. | PolyPlus |
8.7. | PLE separator |
8.8. | Polyplus - a note on lithium seawater |
8.9. | Lithium-seawater batteries for marine applications |
8.10. | Lithium Air Industries |
8.11. | IIT/Argonne National Lab |
8.12. | Lithium air chemistry analysis |
8.13. | Concluding remarks on lithium-air |
9. | FORECASTS |
9.1. | Forecast methodology |
9.2. | Global capacity of solid-state batteries with lithium metal anodes |
9.3. | Global market for solid-state batteries with lithium metal anodes |
9.4. | Global capacity of lithium metal batteries with liquid electrolyte |
9.5. | Global market for lithium metal batteries with liquid electrolyte |
9.6. | Global capacity of lithium-sulfur batteries |
9.7. | Global market for lithium-sulfur batteries |
9.8. | Global lithium metal battery market: 2025-2035 |
9.9. | Lithium metal market proportions for 2035 |
9.10. | Total global capacity of lithium-metal anode batteries |
9.11. | Conclusions |
10. | COMPANY PROFILES |
10.1. | Company profiles |