IDTechEx预测,到2045年,电池供电飞机将在飞机销量中占比24%

2025年-2045年可持续未来航空:趋势、技术、预测

电池电动飞机、eCTOL、氢燃料电池、氢燃烧、混合飞行技术、可持续航空燃料(SAF)、温室气体减排、总体拥有成本、全电动续航里程等。


显示全部 说明 内容、图表列表 价格 Related Content
本报告详尽地描绘了氢能与电池电力技术在航空领域的广泛应用前景(通用航空、公务机及商用客机等)。针对每项应用,其不仅深入剖析了氢能与电池技术如何精准适配飞机的多样化运行需求,还细致评估了它们如何影响总体拥有成本和碳足迹,特别分析了不同电网架构与多样化氢源。展望未来,本报告将视角延伸至2045年。其无疑是洞察未来航空业发展挑战、把握行业新机遇、了解领先企业及战略部署的不可多得之选。
随着航空航天行业寻求脱碳化,本报告涵盖了其未来考虑的关键技术:
 
  • 电池电动飞机
  • 混合动力推进选项
  • 氢燃烧飞机
  • 使用氢燃料电池:
液态氢
700巴压缩氢
 
本报告涵盖了这些技术在以下领域的应用:
 
  • 通用航空飞机
  • 商务喷气机
  • 窄体商用客机
  • 宽体商用客机
 
本报告的20年预测涵盖:
  • 按飞机类型(通用航空、商务喷气机、商用客机)和动力系统(传统内燃机、电池电动、氢气)的单位销售量
  • 按飞机类型(通用航空、商务喷气机、商用客机)和动力系统(传统内燃机、电池电动、氢气)的销售收入(美元)
  • 电池电动飞机的电池需求
  • 电动推进飞机(电池和燃料电池电动)的电机需求
 
1. 执行摘要
 
2. 航空航天行业介绍
a) 主要飞机OEM
b) 主要发动机制造商
c) 航空航天领域的主要初创公司
 
3. 电动和混合动力飞机
a) 通用航空和小型飞机
b) 商务喷气机
c) 商用飞机
d) 总拥有成本
e) 可能的全电动飞行范围
f) 对碳足迹的影响
 
4. 氢燃料电池和氢燃烧飞机
a) 氢能简介
b) 通用航空和小型飞机
c) 商务喷气机
d) 商用飞机
e) 总拥有成本
f) 可能的氢动力飞行范围
g) 对碳足迹的影响
 
5. 可持续航空燃料(SAF)
 
6. 飞机用电池
a) 现成选项和基准测试
b) 硅阳极
c) 关键参与者
 
7. 电动推进飞机的电机
a) 电机要求
b) 技术选项
c) 关键参与者和产品
 
8. 预测
a) 电动飞机的单位销售量
b) 氢气飞机的单位销售量
c) 电动和氢气飞机的收入(十亿美元)
d) 电动飞机的电池需求(GWh)
e) 电动推进飞机的电机需求(GWp)
 
 
The electric airplane market is in its infancy. To the best of IDTechEx's knowledge, there is only one example of an electric airplane for sale today: the Pipistrel Velis Electro. From IDTechEx's perspective, it has had a stellar start, with a surprising number of deliveries since its first in 2020. Electric powertrains fit small general aviation planes well, helping to drive a predicted 35.7% CAGR in electric general aviation airplanes between 2025 and 2035. But, this is just the beginning of a new era of aviation, with "Sustainable Future Aviation 2025-2045: Trends, Technologies, Forecasts" finding that electric and hydrogen-powered airplanes can contribute to a decarbonized aerospace industry across a spectrum of aircraft. From the smallest two-seaters like the Velis Electro, to the largest planes on the market, like the Boeing 777, electric and hydrogen power can provide value and reduce GHG contribution.
 
Emissions of a Boeing are 777-9 per hour compared to a theoretical electric alternative of the same size.
Electric Commercial Airliners Will Need Strategic Deployment
Despite the success of batteries in the automotive industry, and the admirable technological improvements they have shown, it will be almost impossible for battery-electric aircraft to achieve the ranges of existing jet fuel airplanes. The batteries will simply be too heavy, especially for commercial airliners, which need to burn tens of tonnes of fuel before landing to hit their maximum landing weights. This weight limit leaves scarcely a few tonnes of wiggle room for batteries to occupy. A narrow-body airplane like the Boeing 737-10 requires around 100MWh to get its full range. A battery this size would weigh hundreds of tonnes. Even future battery technologies like silicon-anode, metal-anode, or aluminum air will likely be too heavy. As such, full range with battery power alone is a near impossibility.
 
Data source: US Bureau of Transportation, analyzed by IDTechEx
 
The key to the success of battery-powered commercial airliners is to deploy them strategically. Some of the most popular, highest-volume routes flown today are less than 1,000km. Routes like LAX to SFO (Los Angeles to San Francisco) and LHR to FRA (London to Frankfurt) are only 540km and 655km respectively. This is not easily electrifiable today, but there are some avenues open that could help get there, such as:
  • Improved battery technologies
  • Improved plane design with better flight efficiency
  • Higher maximum landing weights to carry more batteries
 
Hydrogen Can Have Widespread Spread Adoption but the Source of the Hydrogen Should be Carefully Considered
Hydrogen has great promise thanks to its gravimetric energy density, at 39.3kWh/kg, it is three times as energy-dense as jet fuel and more than 100 times as energy-dense as today's lithium-ion batteries. This can be hugely exciting until its volumetric limitations are understood. Even in liquid form, hydrogen occupies nearly four times the volume of jet fuel for the same energy. The limiting factor is getting enough storage volume on the airplane to make it useful. It is also limited by the need to be cryogenically cooled to remain a liquid, or pressurized to have useful volumetric energy density as a gas. Despite these limitations, this report explains how hydrogen can be used strategically to fulfill significant air travel demand.
Gravimetric energy densities of different fuels
 
While Hydrogen can easily fulfill enough air travel demand to make it worthwhile, "Sustainable Future Aviation 2025-2045: Trends, Technologies, Forecasts" shows that the key challenge for hydrogen will be balancing fuel costs with carbon credentials. Green hydrogen, from renewable water electrolysis, is the greenest, but also the most expensive way of producing hydrogen. Blue hydrogen, produced from natural gas with carbon capture and storage (CCS), is significantly cheaper but does not provide 100% CO2 removal. Conventional grey hydrogen on the other hand can be made very cheaply, and a grey hydrogen-powered fuel cell airplane would be much cheaper to fuel than jet fuel. However, grey hydrogen emits around 10 kg of CO2 for every kg of hydrogen. This report shows the expected net emissions for each hydrogen production type highlighting which can produce a benefit compared to traditional fossil fuels.
 
SAF is Unavoidable to Decarbonize Air Travel
IDTechEx believes that the technology exists today to build a hydrogen airplane, the industry is just in the process of demonstrating the technology, certifying, scaling etc. A process that is going to take many years. But even if hydrogen and electric planes were ready today, the industry would still need SAF to decarbonize by 2050. There is currently a fleet of around 25,000 commercial airliners in use today, and some of them will still be around in 30 years, such is the long life of these airplanes. Business jets and general aviation are even worse. This report finds there are planes in use today in the US that were built more than 80 years ago. The only realistic option to fully decarbonize by 2050 is to adopt SAF for airframes that are built today, but still be in use then.
 
In addition to aging airframes, there will still be other factors necessitating SAF. The maximum range of planes today is unlikely to be reachable with hydrogen, meaning some routes will be confined to kerosene-like fuels indefinitely. Additionally, some airports simply won't be able to afford new electric and hydrogen fuelling infrastructure and will have to take SAF as a drop-in alternative.
 
"Sustainable Future Aviation 2025-2045: Trends, Technologies, Forecasts" analyses the technology options for general aviation, business jets, and commercial airliners. For each one, it considers the total cost of ownership, potential ranges achievable, and impact on carbon footprint. It also gives overviews of key industry players' attitudes towards emerging propulsion technologies and highlights what the best-funded start-ups are working on. It also highlights previously unconsidered bottlenecks like the scaling of electric motors and the power density/longevity compromise of fuel cells. This report can guide strategy, investment, and planning related to the future of air travel.
As the aerospace industry looks to decarbonize, this report covers the key technologies considered for its future:
  • Battery electric airplanes
  • Hybrid propulsion options
  • Hydrogen combustion airplanes
  • Hydrogen fuel cell using:
- liquid hydrogen
- 700 bar pressurized hydrogen
 
The report covers how these technologies are used across:
  • General aviation airplanes
  • Business jets
  • Narrow-body commercial airliners
  • Wide-body commercial airliners
 
The 20-year forecasts in this report cover:
  • Unit sales by plane type (general aviation, business jet, commercial airliner) and powertrain (conventional ICE, battery electric, hydrogen)
  • Sales revenue in US$ by plane type (general aviation, business jet, commercial airliner) and powertrain (conventional ICE, battery electric, hydrogen)
  • Battery demand for battery electric planes
  • Motor demand for electrically propelled planes (battery and fuel cell electric)
Report MetricsDetails
Historic Data2021 - 2023
CAGRElectric general aviation planes can expect a 35.7% CAGR between 2025 and 2035
Forecast Period2024 - 2045
Forecast UnitsUnit sales, revenue (US$ billion), battery demand (GWh), motor demand (GWp)
Regions CoveredWorldwide
Segments CoveredThis report covers the following emerging propulsion technologies - Battery electric flight - Hybrid flight with jet fuel or SAF - SAF - Hydrogen combustion - Hydrogen fuel cell These technologies are explored across - General aviation planes, including single engine fixed wings and multiengine fixed wings - Business jets - Small commercial narrow-body planes (less than 100 seats) - Commercial narrow-body planes (100-200 seats) - Commercial wide-body planes.
从 IDTechEx 访问分析师
所有报告购买订单均包括与一名专家分析师进行 30 分钟的电话交谈,专家分析师将帮助您将报告中的重要发现与您正在处理的业务问题联系起来。这需要在购买报告后的三个月内使用。
更多信息
如果您对这一报告有任何疑问,请随时联系我们的报告团队 research@IDTechEx.com 或致电我们的销售经理:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
ASIA (Korea): +82 10 3896 6219
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Battery Electric and Hydrogen-Powered Airplane Key Takeaways
1.2.Aircraft Types Covered in this Report
1.3.Aircraft Type Summary - Private and General Aviation
1.4.Aircraft Type Summary - Business Jet
1.5.Aircraft Type Summary - Commercial Airliner
1.6.Overview of Plane Types Energy and Power Requirements
1.7.Batteries are too Heavy for Larger Planes...
1.8....But Hydrogen is too Light
1.9.Full Electric Aircraft SWOT
1.10.Hydrogen Fuel Cell SWOT
1.11.Hydrogen Combustion SWOT
1.12.SAF Will Have a Key Role - Key Takeaways for SAF
1.13.Converting a Commercial Airliner to Battery Electric
1.14.Building A Hydrogen Variant of a Commercial Airliner- Impact on Range - Airbus A321neo
1.15.Useful Ranges of Hydrogen and Battery Electric Aircraft
1.16.Hydrogen Needs to Come from the Right Source to be Carbon Neutral...
1.17.But Electric Planes can be Carbon Neutral Regardless of the Grid
1.18.Fuel Cell vs Hydrogen Jet Engines
1.19.Typical Airplane Engines
1.20.Motors are Power Dense Enough to Replace Airplane Engines but not Powerful Enough for the Largest Planes
1.21.Battery Electric Airplane Sales Forecast - 2021 to 2045
1.22.Hydrogen Airplane Sales Forecast - 2021 to 2045
1.23.Adoption of Battery Electric and Hydrogen Power in the Airplane Market Forecast - 2021 to 2045
1.24.Adoption of Battery Electric and Hydrogen Power in Commercial Narrow-Bodies Forecast - 2021 to 2045
1.25.Revenue From Battery Electric, Hydrogen, and ICE Planes Forecast - 2021 to 2045
1.26.Battery Demand (GWh) From Battery Electric Planes Forecast - 2021 to 2045
1.27.Electric Motor Demand (GWp) From Battery Electric and Hydrogen Planes Forecast - 2021 to 2045
2.INTRODUCTION
2.1.Aircraft Types Covered in this Report
2.2.Aircraft Type Summary - Private and General Aviation
2.3.General Aviation Market Overview
2.4.Aircraft Type Summary - Business Jet
2.5.Business Jet Market Overview
2.6.Aircraft Type Summary - Commercial Airliner
2.7.Commercial Airplane Market Overview
2.8.Established Supply Chain Mapping
2.9.Biggest OEMs in Aerospace
2.10.The Big four Engine Companies
2.11.OEM and Engine Mapping by Industry
2.12.Engine Manufacturers by Engine Type
2.13.Start-up Mapping
2.14.Start-up Funding Over Time
2.15.Start-up Funding Leading Players
2.16.Aviation's Contribution to Global Green House Gas Emissions
3.ELECTRIC AND HYBRID TECHNOLOGIES
3.1.Full Electric Aircraft
3.2.Issues With Weight - Part 1
3.3.Issues With Weight - Part 2
3.4.Small Plane Electrification Case Study - Opportunities
3.5.Single Engine Plane Electrification Case Study - Existing Models
3.6.Electric Training Plane TCO Assumptions
3.7.Electric Training Plane TCO Analysis
3.8.Electric Training Plane TCO Analysis - US$500/kWh battery
3.9.Electric Training Plane TCO Analysis- Carbon Analysis
3.10.Piper PA-28-181 Electric Conversion Kit
3.11.Single Engine Plane Electrification Case Study - Retrofitting Introduction
3.12.Single Engine Plane Electrification Case Study - Characterization
3.13.Single Engine Plane Electrification Case Study - Retrofitting Example
3.14.Single Engine Plane Electrification Case Study - Retrofitting Analysis
3.15.Single Engine Plane Electrification Case Study - Retrofitting Economics
3.16.Single Engine Plane Electrification Case Study - TCO
3.17.Single Engine Plane Electrification Case Study - TCO Analysis
3.18.Electric Conversion Analysis of 20 SEFW planes - Range
3.19.Electric Conversion Analysis of 20 SEFW planes - Endurance
3.20.Single Engine Plane Electrification Case Study - Carbon Analysis
3.21.Single Engine Plane Electrification Case Study - Summary
3.22.Multi-Engine Plane Electrification Case Study - Size Characteristics
3.23.Multi-Engine Plane Electrification Case Study - Engine Characteristics
3.24.Multi-Engine Plane Electrification Case Study - Engine Characteristics
3.25.Multi-Engine Small Plane Case Study - Retrofitting/Conversion Method
3.26.Multi-Engine Small Plane Case Study - Retrofitting/Conversion Analysis
3.27.Multi-Engine Small Plane Case Study - Retrofit TCO for Recreational Use Assumptions
3.28.Multi-Engine Small Plane Case Study - Retrofit TCO for Recreational Use Analysis
3.29.Multi-Engine Small Plane Case Study - Retrofit TCO for Commercial Use
3.30.How Battery Price and Longevity Impact TCO for a Small MEFW
3.31.Electric Conversion Analysis of 26 MEFW planes - Range
3.32.Electric Conversion Analysis of 26 MEFW planes - Endurance
3.33.Multi-Engine Small Plane Electrification Case Study - Carbon Analysis
3.34.MEFW Business Jet Electrification Case Study - Intro
3.35.MEFW Business Jet Electrification Case Study - Gulfstream G650 Electrification Example
3.36.MEFW Business Jet Electrification Case Study - Gulfstream G650 Electrification Example Analysis
3.37.MEFW Business Jet Electrification Case Study - Usage (1)
3.38.MEFW Business Jet Electrification Case Study - Usage (2)
3.39.Electric Business Aircraft in Embraer's Long-Term Plan
3.40.Commercial Airliner Electrification Case Study - Introduction
3.41.Commercial Airliner Electrification - Boeing 737 Max Hypothetical Example
3.42.Commercial Airliner Electrification - Boeing 737 Max Hypothetical Example Analysis
3.43.Commercial Airliner Electrification - Boeing 777 Hypothetical Example
3.44.Commercial Airliner Electrification - Boeing 777 Hypothetical Example Analysis
3.45.Commercial Airliner Electrification - Boeing 777 Max Hypothetical Example Total Cost of Ownership
3.46.Commercial Airliner Electrification - Boeing 777 Max Hypothetical Example Total Cost of Ownership Analysis
3.47.Commercial Airliner Electrification - Potential Routes for an Electric Boeing 777 in the US.
3.48.Commercial Airliner Electrification - Specific Routes that Could be Electrified
3.49.The Impossible Challenge of Charging an Electric Commercial Airliner
3.50.Commercial Airliner Electrification - Carbon Analysis, Single Boeing 777 Hourly Saving
3.51.Double- or Single-Isle Planes for Electrification?
3.52.Multi-Engine Plane Electrification Case Study - Summary
3.53.Key Commercial Airliner Player Roadmaps for Electrification
3.54.Commercial Airliner Electrification to be Led by Start-Ups Like Wright Electric (1)
3.55.Commercial Airliner Electrification to be Led by Start-Ups Like Wright Electric (2)
3.56.Commercial Airliner Electrification to be Led by Start-Ups Like Elysian
3.57.Can Elysian or Wright Electric be the Teslas of Aviation?
3.58.Options for Electric Architectures
3.59.How Hybrid Works During Flight
3.60.Airbus's Abandoned E-Fan X Project
3.61.Challenges with Hybridization According to Airbus
3.62.Suppliers Are Working on Hybrid Products
3.63.Hybrid Power Is Not Just for Large Planes
3.64.Daher Aiming for a Commercial Hybrid GA Product by 2027
3.65.Aura Aero Electric Regional Aircraft (ERA) With More than 1,600km Range
3.66.Heart Aerospace - Hybrid Now but Progressively Electrifying
3.67.Visual Comparison Before and After Hearts Approach Change
3.68.Heart Aerospace Preparing for Take-Off in 2028
3.69.EPFD - A Key Hybrid Flight Project from Industry Leaders
3.70.Table of Electric and Hybrid CTOL Start-Ups
3.71.Table of Electric and Hybrid CTOL Planes
3.72.Key Take Aways of Electric & Hybrid Aviation
4.HYDROGEN FUEL CELL & HYDROGEN COMBUSTION
4.1.1.Hydrogen Fuel Cell SWOT
4.1.2.Hydrogen Combustion SWOT
4.2.Introduction to Hydrogen
4.2.1.The Hydrogen Economy
4.2.2.The Colours of Hydrogen
4.2.3.System Efficiency Between BEVs and FCEVs
4.2.4.What are fuel cells?
4.2.5.Types of fuel cells
4.2.6.Comparison of fuel cell technologies
4.2.7.Overview of PEMFCs
4.2.8.PEMFCs for Aviation
4.2.9.Combustion Versus Fuel Cell for Hydrogen
4.2.10.Hydrogen's Volumetric Density Issues
4.2.11.Gravimetric and Volumetric Energy Densities
4.3.Hydrogen SEFW Case Study
4.3.1.Building A Hydrogen Variant of an SEFW - Introduction
4.3.2.Building A Hydrogen Variant of an SEFW - Weight and Volume Considerations
4.3.3.Building A Hydrogen Variant of an SEFW - Impact on Range
4.3.4.Building A Hydrogen Variant of an SEFW - Total Cost of Ownership Assumptions
4.3.5.Building A Hydrogen Variant of an SEFW - Total Cost of Ownership (1)
4.3.6.Building A Hydrogen Variant of an SEFW - Total Cost of Ownership (2)
4.3.7.Building A Hydrogen Variant of an SEFW - Carbon
4.3.8.Building A Hydrogen Variant of an SEFW - Market Example - Blue Spirit Aero
4.3.9.Building A Hydrogen Variant of an SEFW - Market Example - Deltahawk
4.4.Hydrogen Commercial Airliner Case Study
4.4.1.Building a Hydrogen Variant of a Commercial Airliner - Introduction
4.4.2.Building a Hydrogen Variant of a Commercial Airliner - Weight and Volume Considerations - Airbus A321neo
4.4.3.Building a Hydrogen Variant of a Commercial Airliner - Weight and Volume Analysis - Airbus A321neo
4.4.4.Building a Hydrogen Variant of a Commercial Airliner - Weight and Volume Analysis - Boeing 777-9
4.4.5.Building a Hydrogen Variant of a Commercial Airliner- Impact on Range - Airbus A321neo
4.4.6.Building a Hydrogen Variant of a Commercial Airliner- Impact on Range - Airbus Boeing 777-9
4.4.7.Useful Ranges of Hydrogen Aircraft
4.4.8.Critical Target Routes for Hydrogen Conversion
4.4.9.Building a Hydrogen Variant of a Commercial Airliner- Total Cost of Ownership Assumptions - Airbus A321neo
4.4.10.Building a Hydrogen Variant of a Commercial Airliner- Total Cost of Ownership (1) - Airbus A321neo
4.4.11.Building a Hydrogen Variant of a Commercial Airliner- Total Cost of Ownership (2) - Airbus A321neo
4.4.12.Building a Hydrogen Variant of a Commercial Airliner- Total Cost of Ownership Assumptions - Boeing 777-9
4.4.13.Building a Hydrogen Variant of a Commercial Airliner- Total Cost of Ownership (1) - Boeing 777-9
4.4.14.Building a Hydrogen Variant of a Commercial Airliner- Total Cost of Ownership (2) - Boeing 777-9
4.4.15.Building a Hydrogen Variant of a Commercial Airliner- Carbon - Airbus A321
4.4.16.Building a Hydrogen Variant of a Commercial Airliner- Carbon - Boeing 777-9
4.4.17.Airbus's ZEROe Concepts
4.4.18.Universal Hydrogen Go Bust After Raising US$100 Million in Funding
4.4.19.US$300 Million in Funding Makes ZeroAvia One to Watch
4.4.20.ZeroAvia's Product Timeline Out to 2040
4.4.21.Electric Aviation Group and the H2ERA
4.4.22.CFM and Airbus Working Towards Hydrogen Combustion in 2035
4.4.23.Hydrogen storage
4.4.24.Honeywell Project NEWBORN - Fuel Cells for Aviation
4.4.25.Key Takeaways of Hydrogen Aircraft
5.SUSTAINABLE AVIATION FUEL (SAF) MARKET & PLAYERS
5.1.Current State of the Aviation Industry
5.2.Overview of Feedstocks for SAF
5.3.Jet Fuel Composition & Types
5.4.SAF as a Drop-In Replacement for Jet A-1
5.5.Jet Fuel Price Action 2020-2024
5.6.Government Targets & Mandates for SAF
5.7.Government Targets & Mandates for SAF - Focus on EU & UK
5.8.Government Incentives for SAF Producers
5.9.Overview of SAF Commitments by Passenger & Cargo Airlines
5.10.Major Passenger Airline Commitments & Activities in SAF
5.11.Major Passenger Airline Commitments & Activities in SAF
5.12.Major Cargo Airline Commitments & Activities in SAF
5.13.SAF Alliances & Industry Initiatives
5.14.Summary of Key Market Drivers for SAF
5.15.Main SAF Production Pathways
5.16.Bio-SAF vs e-SAF - the Two Main Pathways to SAF
5.17.ASTM-Approved Production Pathways
5.18.HEFA-SPK Producer Case Study - Neste
5.19.Gasification-FT bio-SAF Project Case Study - Altalto Immingham
5.20.ATJ Project Case Study
5.21.e-SAF Project Case Study - Norsk e-Fuel
5.22.Production Technology Providers Targeting SAF Market
5.23.Production Technology Providers Targeting SAF Market
5.24.Production Technology Providers Targeting SAF Market
5.25.SAF Project Developers by Production Technology
5.26.Fulcrum BioEnergy - a Failed SAF Producer
5.27.Other Cancelled SAF Projects & Reasons for Failure
5.28.SAF Prices - a Key Issue Holding Back Adoption
5.29.Who Will Pay for the Green Premium of SAF?
5.30.Key Drivers and Challenges for SAF Cost Reduction
5.31.SAF Production Capacities
5.32.Key Takeaways and Outlook on SAF
6.BATTERIES FOR PLANES
6.1.1.The Biggest Bottleneck in Electric Aviation
6.2.Off-the-shelf Options
6.2.1.Introduction to Turnkey Battery Pack Suppliers and Key Takeaways
6.2.2.Off the Shelf Pack Suppliers and their Offerings - North America
6.2.3.Off the Shelf Pack Suppliers and their Offerings - Europe (1)
6.2.4.Off the Shelf Pack Off the Shelf Pack Suppliers and their Offerings - Europe (2)
6.2.5.Off the Shelf Pack Suppliers and their Offerings - China
6.2.6.Off the Shelf Pack Suppliers and their Offerings - Other
6.2.7.Off The Shelf Packs - Cycle Life vs Energy Density for Different Chemistries
6.3.Future Options for Batteries
6.3.1.The Key Differences Between Different Battery Technologies
6.3.2.Electrochemistry Definitions 1
6.3.3.Electrochemistry Definitions 2
6.3.4.Lithium Battery Chemistries
6.3.5.The Promise of Silicon
6.3.6.Value Proposition of High Silicon Content Anodes
6.3.7.The Reality of Silicon
6.4.Examples from Start-ups
6.4.1.Ionblox - Pure Silicon Anode Cells for Aviation
6.4.2.Amprius - Silicon Nanowires
6.4.3.H55 - Building a Practical Battery Pack for Electric Aviation Today
6.4.4.Wright Electric - A Different Approach to Batteries
6.4.5.Key Takeaways from Batteries
7.ELECTRIC MOTORS FOR ELECTRIC PROPELLED AIRPLANES
7.1.1.eCTOL Motor / Powertrain Requirements
7.1.2.Overview of Plane Types Energy and Power Requirements
7.1.3.Typical Airplane Engines
7.1.4.Airplane Engines Power and Weight
7.1.5.Turbofan Power Estimations
7.1.6.Electric Motors and Distributed Electric Propulsion
7.1.7.Challenges in Building a 100MW Electric Propulsion Unit
7.2.Electric Motors for Aviation: Players
7.2.1.H3X is Building MW Scale Motors for Commercial Airplane Applications
7.2.2.Evolito is Pursuing Axial Flux for Aviation Applications
7.2.3.Duxion is Reinventing the Motor to Replace Turbofans
7.2.4.Wright Electric's High Power-to-Weight Motor
7.2.5.magniX
7.2.6.Ascendance
7.2.7.Collins - Aerospace Suppliers Working on Motor Products
7.2.8.SAFRAN - Aerospace Suppliers Working on Motor Products
7.2.9.EMRAX
7.2.10.MAGicALL
7.2.11.Nidec Aerospace
7.2.12.Rolls-Royce / Siemens
7.2.13.Rolls-Royce / Siemens
7.2.14.Other Player Examples
7.2.15.Power Density Comparison: Motors for Aviation
7.2.16.Torque Density Comparison: Motors for Aviation
7.2.17.Key Takeaways from Electric Motors
8.FORECASTS
8.1.Forecast Segmentation
8.2.Forecasting Method
8.3.Real World Examples of S-Curve
8.4.Maximum Adoption of Electric and Hydrogen Commercial Airliners
8.5.Key Assumptions
8.6.Key Assumption - Notes
8.7.Airplane Addressable Market Forecast - 2021 to 2045
8.8.Battery Electric Airplane Sales Forecast - 2021 to 2045
8.9.Hydrogen Airplane Sales Forecast - 2021 to 2045
8.10.Adoption of Battery Electric and Hydrogen Power in the Airplane Market Forecast - 2021 to 2045
8.11.Adoption of Battery Electric and Hydrogen Power in GA Forecast - 2021 to 2045
8.12.Adoption of Battery Electric and Hydrogen Power in Business Jets Forecast - 2021 to 2045
8.13.Adoption of Battery Electric and Hydrogen Power in Small Commercial Narrow-Bodies Forecast - 2021 to 2045
8.14.Adoption of Battery Electric and Hydrogen Power in Commercial Narrow-Bodies Forecast - 2021 to 2045
8.15.Adoption of Battery Electric and Hydrogen Power in Commercial Wide-Bodies Forecast - 2021 to 2045
8.16.Revenue From Battery Electric Planes Forecast - 2021 to 2045
8.17.Revenue From Hydrogen Planes Forecast - 2021 to 2045
8.18.Revenue From Battery Electric, Hydrogen, and ICE Planes Forecast - 2021 to 2045
8.19.Battery Demand (MWh) From Battery Electric Planes Forecast - 2021 to 2045
8.20.Electric Motor Demand (GWp) From Battery Electric and Hydrogen Planes Forecast - 2021 to 2045
 

Ordering Information

2025年-2045年可持续未来航空:趋势、技术、预测

£$¥
电子版(1-5 名用户)
£5,650.00
电子版(6-10 名用户)
£8,050.00
电子版及 1 份硬拷贝文件(1-5 名用户)
£6,450.00
电子版及 1 份硬拷贝文件(6-10 名用户)
£8,850.00
电子版(1-5 名用户)
€6,400.00
电子版(6-10 名用户)
€9,100.00
电子版及 1 份硬拷贝文件(1-5 名用户)
€7,310.00
电子版及 1 份硬拷贝文件(6-10 名用户)
€10,010.00
电子版(1-5 名用户)
$7,000.00
电子版(6-10 名用户)
$10,000.00
电子版及 1 份硬拷贝文件(1-5 名用户)
$7,975.00
电子版及 1 份硬拷贝文件(6-10 名用户)
$10,975.00
电子版(1-5 名用户)
元50,000.00
电子版(6-10 名用户)
元72,000.00
电子版及 1 份硬拷贝文件(1-5 名用户)
元58,000.00
电子版及 1 份硬拷贝文件(6-10 名用户)
元80,000.00
电子版(1-5 名用户)
¥990,000
电子版(6-10 名用户)
¥1,406,000
电子版及 1 份硬拷贝文件(1-5 名用户)
¥1,140,000
电子版及 1 份硬拷贝文件(6-10 名用户)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

报告统计信息

幻灯片 281
预测 2045
已发表 Sep 2024
ISBN 9781835700594
 

预览内容

pdf Document Sample pages
 
 
 
 

Subscription Enquiry