Optiques et écrans en AR, VR et MR 2020-2030 : Technologies, Joueurs et Marchés: IDTechEx

This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

Optiques et écrans en AR, VR et MR 2020-2030 : Technologies, Joueurs et Marchés

Un aperçu complet des technologies, des acteurs et des marchés de l'optique et des micro-écrans dans les produits de réalité augmentée, virtuelle et mixte, avec des prévisions de marché complètes jusqu'en 2030.

Show All Description Contents, Table & Figures List Pricing Related Content
This report discusses the markets of the optics and displays technologies within AR/MR and VR devices. The basic definitions of VR, AR and MR are as follows:
  • Virtual reality (VR). This replaces reality with a completely new 3D digital environment.
  • Augmented reality (AR). This overlays digital content on top of the real world.
  • Mixed reality (MR): adds superimposed digital content that superficially interacts with the environment in real-time.
Why do optics matter? Optics influence the immersiveness of an AR/MR or a VR experience. If a user has effects such as God Rays, Rainbow effects, or headaches due to the vergence-accommodation issue, this can contribute to a negative experience. In the future, these problems will be overcome, and improvements and changes to the optical market in both AR/MR and VR devices are an important contributor these trends.
Within optics in AR/MR, this report discusses the different types of waveguides, such as diffractive and geometric waveguides in AR/MR devices. The report discusses the benefits and drawbacks of different optical methods and set-ups, with case studies from a number of the major players in these markets. Within VR devices, the main optics discussed are Fresnel lenses. These lenses magnify the display for the user to see, and have a big impact on the experience a user has when using a spatial reality device.
Another important aspect of an AR, MR or VR device is the display which is used to project the image. Typically, different micro-displays have been used for different spatial reality devices. For example, VR devices have historically used OLED or LCD micro-displays, used in the smartphone industry for many years, and they are a mature, high yield manufacturing choice for VR devices. However, in AR/MR devices, LCoS displays are the most common, because they provide a high brightness and good resolution quality for input to the optical waveguide. This report covers the 6 most important types of micro-display within spatial reality devices: LCD, OLED, DLP, LCoS, OLED-on-Si and mLED. Comparisons are made between the benefits and drawbacks for each display type, with forecasts for each within AR, MR, and VR devices.
Market Analysis
This report covers the forecasts for both the optical and display markets in AR/MR and VR markets. The current state of these markets is discussed and analysed with long range forecasts from 2020-2030 for revenue and volume by technology in:
  • AR/MR Optics
  • VR Optics
  • AR/MR micro-displays
  • VR micro-displays
Key Questions Answered in the Report
  • How has COVID impacted the AR/VR market?
  • What are the major drivers for optic choice in an AR/MR or VR device?
  • What are the major drivers for display choice in an AR/MR or VR device?
  • What the strengths and weaknesses of the six major micro-display types used in AR/MR and VR devices?
  • How will the micro-display choice change in the future?
  • How will the sales of optical devices and display devices evolve from 2020-2030?
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
Further information
If you have any questions about this report, please do not hesitate to contact our report team at research@IDTechEx.com or call one of our sales managers:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.1.1.Executive Introduction
1.1.2.Nomenclature: VR, AR, MR, XR
1.1.3.Applications in VR, AR & MR
1.1.4.Forecasts for the VR Market
1.1.5.Forecasts for the AR/MR Market
1.1.6.AR/VR/MR and COVID
1.2.Executive Summary: Optics
1.2.1.Key Trends: Optics
1.2.2.Historic Trends: Optics in AR/MR
1.2.3.Historic Trends: Optics in VR
1.2.4.What matters when choosing optics?
1.2.5.AR/MR Optics Forecasts 2020-2030
1.2.6.VR Optics Forecasts 2020-2030
1.3.Executive Summary: Displays
1.3.1.Key Trends: Displays
1.3.2.Key Trends: Micro-displays
1.3.3.The uptake of micro-LED
1.3.4.Which properties matter for a display in a VR device?
1.3.5.Which properties matter for a display in an AR/MR device?
1.3.6.Historic Market Data: Displays
1.3.7.Displays in AR/MR and VR: Revenue Trends
1.3.8.Display Trends in AR/MR
1.3.9.Display Trends in VR
2.1.Introduction: Virtual, Augmented and Mixed Reality
2.2.AR/VR/MR has advanced in the past decade
2.3.Terminology: Search trends
2.5.Nomenclature: VR, AR, MR, XR
2.6.Applications in VR, AR & MR
2.7.AR/VR/MR and COVID
2.8.The Continued Uptake of Smart Devices
2.9.The Range of Headsets Available
2.10.How the human eye understands space
2.11.Field of view for different headsets
2.12.What optics and displays are used in XR devices?
2.13.How Lenses work
2.14.What needs to be overcome in ARVR
2.15.Vergence- Accommodation Issue
2.16.Optical Aberrations
2.17.The Screen Door Effect
3.1.1.What are optics?
3.1.2.Optics Chapter Structure
3.1.3.Optics: Glossary
3.2.Optics in AR/MR: Common Optical Combiner Architectures
3.2.1.Summary of Optical Combiner Architectures
3.2.2.Birdbath Combiners
3.2.3.Bug-eye Combiners
3.2.4.Case Study: Meta 2
3.2.5.Off-Axis with multiple reflectors
3.2.6.Tilted plate combiner
3.2.7.Total Internal Reflection Prism Combiners
3.2.8.Case Study: Google Glass (2013)
3.2.9.Butterfly Waveguide Combiner
3.3.Optics in AR/MR: Waveguides
3.3.1.Common Waveguides
3.3.2.Common Waveguides - diagram of operation
3.4.Geometric Waveguides
3.4.1.Manufacturing Geometric Waveguides
3.4.2.Companies which make geometric waveguides
3.4.4.Case Study: Lumus DK-50/DK-51/DK-52/ DK-vision
3.4.6.Kura Gallium Headset
3.4.7.SWOT - Geometric Waveguide
3.4.8.RADAR Chart - Geometric Waveguide
3.5.Diffractive Waveguides
3.5.1.Surface Relief Grating Waveguides
3.5.2.SRG Waveguide Example: Hololens
3.5.3.SRG Waveguide Example: Magic Leap
3.5.6.Volumetric Holographic Grating Waveguides
3.5.13.Manufacturing techniques for diffractive waveguides
3.5.14.SWOT - Diffractive Waveguide
3.5.15.RADAR chart - Diffractive Waveguide
3.5.16.Case Study: Sony SED-100A
3.5.17.Case Study: Hololens 2
3.6.What makes a successful waveguide?
3.6.1.Factors to consider
3.6.2.RADAR Chart: Waveguides
3.6.3.The future of waveguide technology
3.7.Optics in AR/MR: Alternative AR/MR Combiners
3.7.1.Alternative AR/MR combiners
3.7.2.Alternative AR combiners
3.7.3.Pin Mirror Optics
3.7.4.Laser Beam Scanning
3.7.5.Optics: Lenses in VR
3.8.Lenses in VR
3.8.1.Types of Fresnel Lens
3.8.2.Facebook patented Fresnel lens
3.8.3.Oculus' Half Dome 3
3.8.4.Users modifying headsets
3.9.Optical Coatings In AR and VR Devices
3.9.1.Optic Coatings in VR and AR
3.9.2.Anti-reflective Coatings
3.9.3.Beam-splitter Coatings
3.9.4.Metal Mirror Coatings
3.9.5.Companies: Optical Coatings
3.9.6.Denton Vacuum
3.9.7.AccuCoat inc
3.9.8.Optics Blazers
4.1.Comparison of Historic Optics Properties
4.1.1.Historic Trends: Optics in AR/MR
4.1.2.Historic Trends: Optics in VR
4.1.3.What matters when choosing optics?
4.2.Forecasts: Optics in AR/MR and VR
4.2.1.Forecasts for the VR Market
4.2.2.Forecasts for the AR/MR Market
4.2.3.Waveguides in AR/MR
4.2.4.AR/MR Optics: Revenue
4.2.5.AR/MR Optics: Volumes
4.2.6.VR Optics Forecasts
4.2.7.VR Optics: Revenue Forecasts
4.2.8.VR Optics: Volume Forecasts
5.1.1.Micro-display technology comparison
5.1.2.Displays Discussed
5.1.3.Display Types in VR Products
5.1.4.Display Types in AR/MR Products
5.2.Display Deep Dive: LCD
5.2.1.Structural comparison between Microdisplays: LCD
5.2.2.Manufacturing Methods: LCD
5.2.3.Headset example - LCD
5.2.4.LCD Manufactures
5.3.Display Deep Dive: OLED
5.3.1.Structural comparison between Microdisplays: OLED
5.3.2.Structural comparison between Microdisplays: PMOLED and AMOLED
5.3.3.Manufacturing methods: OLED
5.3.4.Headset Example - OLED
5.3.5.Headset Example - AMOLED
5.3.6.OLED Manufactures
5.3.7.Raystar Optronics
5.4.Display Deep Dive: DLP
5.4.1.Structural Comparison: DLP
5.4.2.Headset Example - Texas Instruments
5.4.3.Manufactures of DLP micro-displays
5.5.Display Deep Dive: LCoS
5.5.1.Structural comparison between Microdisplays: LCoS
5.5.2.Manufacturing Methods: LCoS
5.5.3.Headset examples - LCoS
5.5.4.LCoS Manufactures
5.5.7.Meadowlark Optics Inc.
5.5.8.HOLOEYE Photonics
5.5.9.Himax Technologies Inc.
5.6.Display Deep Dive: OLED-on-Silicon
5.6.1.Structural comparison between Microdisplays: OLED-on-Silicon
5.6.2.Headset Example -OLED-on-Si
5.6.3.OLED-on-Silicon Manufacturers
5.7.Displays: Micro-LED
5.7.1.RADAR Chart: micro-LED display
5.7.2.Display types based on micro-LEDs
5.7.3.Structural Comparison: Micro-LED
5.7.4.Manufacturing Methods: Micro-LED
5.7.5.Positives and Negatives: micro-LED
5.7.6.SWOT analysis of micro-LED micro-displays
5.7.7.Micro-LED Manufacturers
5.8.1.Sharp: introduction
5.8.2.Process flow of Silicon Display
5.8.3.Display driver
5.8.4.Monolithic micro-LED array
5.8.5.Full colour realization
5.8.6.Prototypes made by Sharp
5.9.1.Plessey: GaN-on-Silicon
5.9.2.Plessey's display development roadmap
5.9.3.LED manufacturing
5.9.4.Pixel development
5.9.5.RGB GaN on silicon
5.9.6.Plessey's core development
5.10.1.Lumiode: introduction
5.10.2.Lumiode approach, process details
5.10.3.Lumiode's micro-LED performance
5.10.4.Lumiode's device performance
5.11.Jade Bird Display
5.11.1.Jade Bird Display: introduction
5.11.2.Existing hybrid integration technology by flip chip technique
5.11.3.Device fabrication
5.11.4.Device structure and architecture
5.11.5.micro-LEDs for JBD's micro-displays
5.11.6.JBD's monochromatic AM micro-LED micro-displays
5.11.7.AM micro-LED with directional emission
5.11.8.Application: 3 colour LED projector
5.11.9.High PPI AM micro-LED micro-display
5.11.10.AM micro-LED chips
5.11.11.Prototype for AR/VR
5.12.1.Introduction of Glō
5.12.2.Glō's technology
5.12.3.Glō's prototypes
5.13.Displays: Overall Comparison
5.13.2.Comparing Micro-displays
5.13.3.Deeper Dive: LCD
5.13.4.Deeper Dive: OLED
5.13.5.Deeper Dive: DLP
5.13.6.Deeper Dive: LCoS
5.13.7.Deeper Dive: OLED-on-Silicon
5.13.8.Deeper Dive: micro-LED
5.14.The Future: Focus Tunable Displays
5.14.1.Monovision vs. focus-tunable displays
5.14.2.Deep Optics: dynamically focus-tunable displays
5.14.3.SWOT Focus Tuneable
6.2.Comparison of Historic Display Properties
6.2.1.Comparing the display properties
6.2.3.Refresh Rate
6.2.4.The resolution improvements over time
6.2.5.Increasing Resolution also has an increasing FoV
6.2.6.Comparison between Display Types
6.2.7.Key Historic Trends
6.2.8.The uptake of micro-LED
6.2.9.Which properties matter for a display in a VR device?
6.2.10.Which properties matter for a display in an AR/MR device?
6.3.Forecasts: Displays in VR and AR/MR
6.3.1.Forecasts for the VR Market
6.3.2.Forecasts for the AR/MR Market
6.3.3.Displays in AR/MR and VR: Revenue Trends
6.3.4.Display Trends in AR/MR
6.3.5.Display Trends in VR
6.3.6.Display Revenues Full Data
6.3.7.Display Volumes Full Data
6.3.8.AR/MR Revenues Full Data
6.3.9.AR/MR Volumes Full Data
6.3.10.VR Revenues Full Data
6.3.11.VR Volumes Full Data

Report Statistics

Slides 280
Forecasts to 2030
ISBN 9781913899042

Subscription Enquiry