This report is no longer available. Click here to view our current reports or contact us to discuss a custom report.

If you have previously purchased this report then please use the download links on the right to download the files.

Oportunidades de materiales en la energía fotovoltaica emergente 2020-2040

CIGS, GaaS, compuesto lll-V, perovskita, OPV, CDTe, conductor, barrera, TCO, ITO, pintura, transparente, flexible

Show All Description Contents, Table & Figures List Pricing Related Content
The IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.
See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?
Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?
Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.
The 225 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.
Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.
Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
Further information
If you have any questions about this report, please do not hesitate to contact our report team at or call one of our sales managers:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.1.Purpose of this report
1.2.Two worlds
1.3.Anatomy of the photovoltaic business 2020-2040
1.4.Primary conclusions: photovoltaics top ten manufacturers chemistry
1.5.Primary conclusions: price-volume sensitivity by application
1.6.Primary conclusions: cost progression 1976-2040
1.7.Primary conclusions: thin film PV market
1.8.Primary conclusions: cadmium telluride
1.9.Primary conclusions: geographic PV materials demand
1.10.CIGS PV forecasts
1.10.1.Global output of thin film CIGS photovoltaics $M and MWp 2000-2018
1.10.2.Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040
1.11.Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040
1.12.Global market for perovskite PV $M
1.13.Global market for OPV $M
2.1.Overview: amazing virtuosity
2.1.1.Extreme vehicles and weak light create new markets
2.1.2.Photovoltaic cooking without batteries
2.2.The energy positive house
2.3.Ever larger solar farms
2.4.Solar cars: Hyundai, Tesla
2.5.Winning electromagnetic frequencies
2.6.SOFT report on photovoltaics
2.7.Some of the important parameters
2.8.Single crystal scSi vs polycrystal pSi vs amorphous
2.9.Amorphous silicon
2.10.Big picture: wafer vs thin film photovoltaics 2020-2040
2.11.PV mechanisms: status, benefits, challenges, market potential compared
2.11.1.Five mechanisms compared
2.11.2.Best research-cell efficiencies assessed 1975-2020
2.12.Important PV options beyond silicon compared
2.13.Thirteen new photovoltaic formats creating materials markets
2.14.Photovoltaics progresses to become paint and user material
2.15.Solar piazzas, driveways, roads: Platio Hungary
2.16.MEMS PV
2.17.Transparent, indoor and underwater PV materials needed
2.18.Materials opportunities from integration with other harvesting materials
2.18.1.Triboelectric TENG with other harvesting: experimental
2.18.2.Integration in smart watches
3.3.Space program: IOFFE Institute, ITMO University
3.4.Boeing Spectrolab
3.6.Costs and prices can be greatly reduced
3.6.1.Reducing lll-V cost
3.7.Indoors: Lightricity
3.8.Solar vehicle technologies compared: Sono, Lightyear, Toyota with lll-lV
3.8.1.Solar vehicle chemistry
3.8.2.Solar vehicle format
4.2.Operating principle
4.3.CIGS photovoltaics processes: Sunflare, Flisom, EMPA, Manz, Solar Frontier
4.4.CIGS production, materials, routes to non toxic
4.5.Avoiding ITO
4.6.Ascent Solar
4.7.Better polymer substrate process: KIER
4.8.Renovagen: high power PV like a carpet roll
4.10.Flisom customizable flexible
4.11.Other CIGS PV in action on vehicles
4.12.Market leader Solar Frontier
4.13.Sunflare: specialist niches
5.2.Competitive situation
5.3.OPV progress to commercialisation 2000-2040
5.6.Opvius and Armor
5.7.Device architecture and Sigma Aldrich materials
5.8.Materials: Merck, DuPont Teijin
5.9.What substrates to choose?
5.10.Typical device architectures
5.11.Film morphology and degradation control for bulk heterojunction
5.12.R2R solution vs R2R evaporation
5.13.Donor polymers
5.14.Donor small molecules
5.15.Typical acceptor materials
5.16.Progress in solution processing
5.17.Progress in tandem cell evaporation
5.18.Solution processed 17.5% tandem OPV
5.19.R2R solution vs R2R evaporation
5.20.Major technical challenges with R2R
5.21.Barrier/encapsulation challenge
5.22.Transparent electrode
5.23.Big advance 2018- 2020: non-fullerene acceptors NFA
6.2.Perovskite structure and device architecture
6.3.Working principle
6.5.Value propositions and roadmap to 2040
6.6.Perovskite materials
6.7.Why perovskite is so efficient
6.8.Efficiency versus transmission
6.9.Roadmap to lead-free perovskite
6.10.Improving life
6.11.Flexible perovskite solar cells
6.12.Deposition processes for perovskite films
6.13.Perovskite module cost estimation
6.14.Future perovskite PV system cost breakdown
7.1.Dual technology photovoltaics
7.2.Perovskite silicon tandem: record 25.2% efficiency
7.3.Perovskite on CIGS
7.4.Quantum dot
7.6.Wild cards: 2D materials, nantennas materials
7.6.2.Rectenna nantenna-diode
8.3.Major cost drivers for photovoltaics
8.4.Reducing silver content per wafer: industry consensus
8.5.Expected market share: plating and screen printing of electrodes
8.6.Photovoltaics: roadmap towards ever thinner wafers
8.7.Photovoltaics market share forecast for different metallization technologies
8.8.Silicon inks: made redundant before seeing daylight?
8.9.Copper metallization in solar cells
8.10.Silver nanoparticles adopted for thin film photovoltaics?
8.11.PV and heater: digital printing comes of age?
9.1.Why barriers and encapsulation?
9.2.Barrier performance requirements (permeation rates)
9.3.Barrier requirements: towards flexibility and rollability
9.4.Plastic substrates are a challenge
9.5.The basis of the multi-layer approach
9.6.Status of R2R barrier films in performance, web width and readiness/scale
9.7.Challenges of R2R barrier film production
9.8.From glass to multi-layer films to multi-layer inline thin film encapsulation
9.9.Trends in TFE: Past, present and future of deposition
9.10.Benchmarking different barrier solutions
9.11.Evolution of production parameters to enable multi-layer barrier cost reduction
9.12.Flexible CIGS: market forecast sqm and value by barrier technology

Report Statistics

Slides 225
Forecasts to 2040

Subscription Enquiry