1. | EXECUTIVE SUMMARY |
1.1. | Global EV Sales, 2011 - H1 2024 |
1.2. | Materials Considered in this Report |
1.3. | Global Battery Chemistry |
1.4. | Cathode Market Share for Li-ion in EVs (2015-2035) |
1.5. | Li-ion performance and technology timeline |
1.6. | How Does Material Intensity Change? |
1.7. | Cathode Material Demand Forecast 2021-2035 (kg) |
1.8. | Anode materials |
1.9. | The promise of silicon |
1.10. | Anode Material Demand Forecast for EVs 2021-2035 (kg) |
1.11. | Battery Cell Material Demand Forecast for EVs 2021-2035 (kg) |
1.12. | Cell Format Market Share |
1.13. | Major Challenges in EV Battery Design Overview |
1.14. | Methods for Materials Suppliers to Improve Sustainability for the OEM |
1.15. | Gravimetric Energy Density and Cell-to-pack Ratio |
1.16. | Passenger Cars: Pack Energy Density Trends |
1.17. | Cell vs Pack Energy Density |
1.18. | Component Breakdown of a Battery Pack |
1.19. | Reduction of Pack Materials (kg/kWh) |
1.20. | Thermal Conductivity Shift |
1.21. | Battery Thermal Management Strategy Market Share |
1.22. | Energy Density Improvements with Composites |
1.23. | Cure Mechanisms for Sealants |
1.24. | Thermal Runaway in Cell-to-pack |
1.25. | Fire Protection Materials: Main Categories |
1.26. | Insulation Materials Comparison |
1.27. | Battery Pack Material Demand Forecast for EVs 2021-2035 (kg) |
1.28. | Total Battery Cell and Pack Materials Forecast by Material 2021-2035 (kg) |
1.29. | Total Battery Cell and Pack Materials Forecast by Vehicle Type 2021-2035 (kg) |
1.30. | Total Battery Cell and Pack Materials Market Value Forecast 2021-2035 (US$) |
1.31. | Access More With an IDTechEx Subscription |
2. | INTRODUCTION |
2.1. | Electric Vehicle Definitions |
2.2. | Drivetrain Specifications |
2.3. | Global EV Sales, 2011 - H1 2024 |
2.4. | Regional Snapshot - China |
2.5. | Regional Snapshot - EU + UK + EFTA |
2.6. | Regional Snapshot - USA |
2.7. | Battery Materials for Electric Vehicles |
2.8. | Materials Considered in this Report |
3. | LI-ION BATTERY CHEMISTRY |
3.1. | What is a Li-ion Battery? |
3.2. | Lithium Battery Chemistries |
3.3. | Why Lithium? |
3.4. | Li-ion Cathode Benchmark |
3.5. | Li-ion Anode Benchmark |
3.6. | Global Battery Chemistry |
4. | CELL COSTS AND ENERGY DENSITY |
4.1. | Energy density by cathode |
4.2. | Li-ion performance and technology timeline |
4.3. | Impact of CAM prices on cell material costs |
4.4. | Impact of Material Price |
4.5. | Li-ion Batteries: Technologies, Markets and End of Life |
5. | MATERIALS FOR LI-ION BATTERY CELLS |
5.1. | Active and Inactive Material Intensity by Chemistry |
5.1.1. | How Does Material Intensity Change? |
5.1.2. | Inactive Material Intensities (exc. casings) |
5.2. | Raw Materials |
5.2.1. | The Elements Used in Li-ion Batteries |
5.2.2. | The Li-ion Supply Chain |
5.2.3. | Raw Material Supply a Driver for Alternative Chemistries? |
5.3. | Cathode Materials |
5.3.1. | Li-ion cathode development |
5.3.2. | Cathode material intensities |
5.3.3. | Cathode Material Intensities (kg/kWh) |
5.3.4. | Cathode Market Share for Li-ion in EVs (2015-2035) |
5.3.5. | Cathode Material Demand Forecast 2021-2035 (kg) |
5.3.6. | Price Assumptions |
5.3.7. | Critical Cathode Material Value Forecast 2021-2035 (US$) |
5.3.8. | Lithium |
5.3.9. | Lithium Introduction |
5.3.10. | Lithium resource split by country |
5.3.11. | Where is lithium used? |
5.3.12. | Outlook of lithium supply vs demand 2023-2035 |
5.3.13. | Lithium Demand Forecast for EVs 2021-2035 (kg) |
5.3.14. | Cobalt |
5.3.15. | Introduction to Cobalt |
5.3.16. | Cobalt Production by Country 2020-2023 |
5.3.17. | Questionable Cobalt Mining Practice |
5.3.18. | Cobalt Price Trend |
5.3.19. | Changing Intensity of Cobalt in Li-ion |
5.3.20. | Cobalt Demand Forecast for EVs 2021-2035 (kg) |
5.3.21. | Nickel |
5.3.22. | An Overview of Nickel |
5.3.23. | Nickel Mining by Country |
5.3.24. | Nickel Demand Forecast for EVs 2021-2035 (kg) |
5.4. | Anode Materials |
5.4.1. | Anode materials |
5.4.2. | Anode Material Demand Forecast for EVs 2021-2035 (kg) |
5.4.3. | Anode Material Prices |
5.4.4. | Anode Material Market Value Forecast for EVs 2021-2035 (US$) |
5.4.5. | Graphite |
5.4.6. | Introduction to Graphite |
5.4.7. | Comparing natural and synthetic graphite anodes |
5.4.8. | Synthetic vs natural graphite overview |
5.4.9. | Graphite Intensity by Battery Chemistry |
5.4.10. | Geographic breakdown of graphite anode suppliers |
5.4.11. | Graphite Demand Forecast for EVs 2021-2035 (kg) |
5.4.12. | Silicon |
5.4.13. | The promise of silicon |
5.4.14. | Value proposition of silicon anodes |
5.4.15. | The reality of silicon |
5.4.16. | Commercial silicon anode production |
5.4.17. | Current silicon use |
5.4.18. | Silicon and LFP |
5.4.19. | Silicon Demand Forecast for EVs 2021-2035 (kg) |
5.5. | Electrolytes, Separators, Binders, and Conductive Additives |
5.5.1. | What is in a Cell? |
5.5.2. | Introduction to Li-ion electrolytes |
5.5.3. | Electrolyte Technology Overview |
5.5.4. | Electrolyte market by region |
5.5.5. | Introduction to Separators |
5.5.6. | Polyolefin separators |
5.5.7. | Binders |
5.5.8. | Binders - aqueous vs non-aqueous |
5.5.9. | Conductive agents |
5.5.10. | Current Collectors in a Li-ion Battery Cell |
5.5.11. | Current collector materials |
5.6. | Total Battery Cell Materials Forecast |
5.6.1. | Battery Cell Material Demand Forecast for EVs 2021-2035 (kg) |
5.6.2. | Battery Cell Material Market Value Forecast for EVs 2021-2035 (US$) |
6. | CELL AND PACK DESIGN |
6.1. | Cell Types and Challenges |
6.1.1. | Cell Types |
6.1.2. | Cell Format Market Share |
6.1.3. | Li-ion Batteries: from Cell to Pack |
6.1.4. | Pack Design |
6.1.5. | Shifts in cell and pack design |
6.1.6. | Major Challenges in EV Battery Design Overview |
6.2. | Cell-to-pack, cell-to-chassis and Large Cell Formats: Designs and Announcements |
6.2.1. | Modular pack designs |
6.2.2. | What is Cell-to-pack? |
6.2.3. | Drivers and Challenges for Cell-to-pack |
6.2.4. | What is Cell-to-chassis/body? |
6.2.5. | Servicing/ Repair and Recyclability |
6.2.6. | EU Regulations and Recyclability |
6.2.7. | Methods for Materials Suppliers to Improve Sustainability for the OEM |
6.2.8. | BYD Blade Cell-to-pack |
6.2.9. | BYD Cell-to-body |
6.2.10. | CATL Cell-to-pack and Cell-to-chassis |
6.2.11. | CATL CTP 3.0 |
6.2.12. | GM Ultium |
6.2.13. | Leapmotor Cell-to-chassis |
6.2.14. | LG Removing the Module |
6.2.15. | MG Cell-to-pack |
6.2.16. | Nio Hybrid Chemistry Cell-to-pack |
6.2.17. | Our Next Energy: Aeris |
6.2.18. | Stellantis Cell-to-pack |
6.2.19. | SVOLT - Dragon Armor Battery |
6.2.20. | SK On - S-Pack |
6.2.21. | Tesla cell-to-body |
6.2.22. | VW Cell-to-pack |
6.2.23. | Cell-to-pack and Cell-to-body Designs Summary |
6.2.24. | Gravimetric Energy Density and Cell-to-pack Ratio |
6.2.25. | Volumetric Energy Density and Cell-to-pack Ratio |
6.2.26. | Outlook for Cell-to-pack & Cell-to-body Designs |
6.2.27. | Electrode-to-pack |
6.3. | Energy Density and Material Utilization |
6.3.1. | Passenger Cars: Pack Energy Density (361 models) |
6.3.2. | Passenger Cars: Pack Energy Density Trends |
6.3.3. | Passenger Cars: Cell Energy Density Trends |
6.3.4. | Cell vs Pack Energy Density |
6.3.5. | Cell and Pack Energy Density Forecast 2020-2035 (Wh/kg) |
6.3.6. | Component Breakdown of a Battery Pack |
6.3.7. | Reduction of Pack Materials (kg/kWh) |
7. | PACK COMPONENTS |
7.1. | Thermal Interface Materials for EV Battery Packs |
7.1.1. | Introduction to Thermal Interface Materials for EVs |
7.1.2. | TIM pack and module overview |
7.1.3. | TIM Application - Pack and Modules |
7.1.4. | TIM Application by Cell Format |
7.1.5. | Key Properties for TIMs in EVs |
7.1.6. | Gap Pads in EV Batteries |
7.1.7. | Switching to Gap Fillers from Pads |
7.1.8. | Thermally Conductive Adhesives in EV Batteries |
7.1.9. | Material options and market comparison |
7.1.10. | TIM Chemistry Comparison |
7.1.11. | Gap Filler to Thermally Conductive Adhesives |
7.1.12. | Thermal Conductivity Shift |
7.1.13. | TCA Requirements |
7.1.14. | TIM demand per vehicle |
7.1.15. | TIM Forecast for EV Batteries 2021-2035 (kg) |
7.1.16. | Other Applications for TIMs |
7.2. | Cold Plates and Coolant Hoses |
7.2.1. | Thermal System Architecture |
7.2.2. | Coolant Fluids in EVs |
7.2.3. | Introduction to EV Battery Thermal Management |
7.2.4. | Battery Thermal Management Strategy by OEM |
7.2.5. | Battery Thermal Management Strategy Market Share |
7.2.6. | Thermal Management in Cell-to-pack Designs |
7.2.7. | Inter-cell Heat Spreaders or Cooling Plates |
7.2.8. | Advanced Cold Plate Design |
7.2.9. | Roll Bond aluminium Cold Plates |
7.2.10. | Examples of Cold Plate Design |
7.2.11. | Erbslöh Aluminum |
7.2.12. | Polymer Heat Exchangers? |
7.2.13. | Integrating the Cold Plate into the Enclosure |
7.2.14. | Cold Plate Suppliers (1) |
7.2.15. | Cold Plate Suppliers (2) |
7.2.16. | Cold Plate Suppliers (3) |
7.2.17. | Coolant Hoses for EVs |
7.2.18. | Coolant Hose Material |
7.2.19. | Alternate Hose Materials (1) |
7.2.20. | Alternate Hose Materials (2) |
7.2.21. | Alternate Hose Materials (3) |
7.2.22. | Thermal Management Component Mass Forecast 2021-2035 (kg) |
7.3. | Battery Enclosures |
7.3.1. | Battery Enclosure Materials and Competition |
7.3.2. | From Steel to Aluminium |
7.3.3. | Reducing Weight Further with Aluminum |
7.3.4. | Towards Composite Enclosures? |
7.3.5. | Composite Enclosure EV Examples (1) |
7.3.6. | Composite Enclosure EV Examples (2) |
7.3.7. | Projects for Composite Enclosure Development (1) |
7.3.8. | Projects for Composite Enclosure Development (2) |
7.3.9. | Alternatives to Phenolic Resins |
7.3.10. | Are Polymers Suitable Housings? |
7.3.11. | Envalior - Plastic Enclosure for HV Battery |
7.3.12. | Plastic Intensive Battery Pack from SABIC |
7.3.13. | Polymers Replacing Metals |
7.3.14. | SMC vs RTM/LCM |
7.3.15. | SMC for Battery Trays and Lids - LyondellBasell |
7.3.16. | Advanced Composites for Battery Enclosures - INEOS Composites |
7.3.17. | Polyamide 6-based Enclosure |
7.3.18. | Continental Structural Plastics - Honeycomb Technology |
7.3.19. | Composite Parts - TRB Lightweight Structures |
7.3.20. | Composites with Fire Protection |
7.3.21. | Other Composite Enclosure Material Suppliers (1) |
7.3.22. | Other Composite Enclosure Material Suppliers (2) |
7.3.23. | COOLBat Lightweight Battery Enclosures |
7.3.24. | EMI Shielding for Composite Enclosures |
7.3.25. | Challenges with Structural Batteries |
7.3.26. | Adding Fire Protection to Composite Parts |
7.3.27. | Metal Foams for Battery Enclosures? |
7.3.28. | Battery Enclosure Materials Summary |
7.3.29. | Energy Density Improvements with Composites |
7.3.30. | Cost Effectiveness of Composite Enclosures |
7.3.31. | Battery Enclosure Material Forecasts 2021-2035 (kg) |
7.4. | Pack Sealants |
7.4.1. | How to Seal an EV Battery Enclosure |
7.4.2. | Challenges with Sealing EV Batteries |
7.4.3. | Cure Mechanisms for Sealants |
7.4.4. | Determining the Sealing Approach |
7.4.5. | A Variety of Dispensed Materials Available |
7.4.6. | Players and Materials |
7.4.7. | Properties of Battery Sealants |
7.4.8. | Injection Molded Battery Seals |
7.4.9. | Tapes for Battery Sealing |
7.4.10. | Other Areas for Battery Sealants (Cold Plate Integration) |
7.4.11. | Other Areas for Battery Sealants (Tesla Structural Pack) |
7.4.12. | Sealant Quantity per Vehicle |
7.4.13. | EV Battery Sealants Forecast 2021-2035 (kg) |
7.5. | Fire Protection Materials |
7.5.1. | Thermal Runaway and Fires in EVs |
7.5.2. | Battery Fires and Related Recalls (automotive) |
7.5.3. | Automotive Fire Incidents: OEMs and Situations |
7.5.4. | EV Fires Compared to ICEs (1) |
7.5.5. | EV Fires Compared to ICEs (2) |
7.5.6. | Issues with EV and ICE Fire Comparisons |
7.5.7. | Severity of EV Fires |
7.5.8. | EV Fires: When do They Happen? |
7.5.9. | Regulations |
7.5.10. | What are Fire Protection Materials? |
7.5.11. | Thermal Runaway in Cell-to-pack |
7.5.12. | Thermally Conductive or Thermally Insulating? |
7.5.13. | Fire Protection Materials: Main Categories |
7.5.14. | Material Comparison |
7.5.15. | Density vs Thermal Conductivity - Thermally Insulating |
7.5.16. | Density vs Thermal Conductivity - Cylindrical Cell Systems |
7.5.17. | Material Market Shares 2023 |
7.5.18. | Fire Protection Materials Forecast 2019-2035 (kg) |
7.5.19. | Fire Protection Materials |
7.6. | Compression Pads/Foams |
7.6.1. | Compression Pads/foams |
7.6.2. | Polyurethane Compression Pads |
7.6.3. | Rogers Compression Pads |
7.6.4. | Compression and Fire Protection (1) |
7.6.5. | Compression and Fire Protection (2) |
7.6.6. | Saint-Gobain |
7.6.7. | Players in Compression Pads/foams |
7.6.8. | Example use in EVs: Ford Mustang Mach-E |
7.6.9. | Compression Pads/foams Forecast 2021-2035 (kg) |
7.7. | Cell Electrical Insulation |
7.7.1. | Inter-cell Electrical Isolation |
7.7.2. | Films for Electrical Insulation |
7.7.3. | Avery Dennison - Tapes for Batteries |
7.7.4. | Dielectric Coatings |
7.7.5. | Insulation Materials Comparison |
7.7.6. | Insulating Cell-to-cell Foams |
7.7.7. | Inter-cell Electric Isolation Forecast 2021-2035 (kg) |
7.8. | Electrical Interconnects and Insulation |
7.8.1. | Introduction to Battery Interconnects |
7.8.2. | Aluminum vs Copper for Interconnects |
7.8.3. | Busbar Insulation Materials |
7.8.4. | Tesla Model S P85D |
7.8.5. | Nissan Leaf 24kWh: Cell Connection |
7.8.6. | Nissan Leaf 24kWh |
7.8.7. | BMW i3 94Ah |
7.8.8. | Hyundai E-GMP |
7.8.9. | VW ID4 |
7.8.10. | Tesla 4680 |
7.8.11. | Material Quantity in Battery Interconnects: kg/kWh Summary |
7.8.12. | Electrical Interconnects: Aluminum, Copper, and Insulation Forecast 2021-2035 (kg) |
7.9. | Battery Pack Materials Forecasts |
7.9.1. | Battery Pack Material Demand Forecast for EVs 2021-2035 (kg) |
7.9.2. | Battery Pack Materials Price Assumptions |
7.9.3. | Battery Pack Material Market Value Forecast for EVs 2021-2035 (US$) |
8. | BATTERY MATERIAL/STRUCTURE EXAMPLES |
8.1. | Examples: Automotive |
8.1.1. | Audi e-tron |
8.1.2. | Audi e-tron GT |
8.1.3. | BMW i3 |
8.1.4. | BYD Blade |
8.1.5. | CATL CTP 3.0 |
8.1.6. | Chevrolet Bolt |
8.1.7. | Faraday Future FF91 |
8.1.8. | Ford Mustang Mach-E/Transit/F150 battery |
8.1.9. | Honda 0 Series |
8.1.10. | Hyundai Kona |
8.1.11. | Hyundai E-GMP |
8.1.12. | Jaguar I-PACE |
8.1.13. | Kia EV9 (GMP) |
8.1.14. | Mercedes EQS |
8.1.15. | MG ZS EV |
8.1.16. | MG Cell-to-pack |
8.1.17. | Porsche Taycan |
8.1.18. | Rimac Technology |
8.1.19. | Rivian R1T |
8.1.20. | Tesla Model 3/Y Cylindrical NCA |
8.1.21. | Tesla Model 3/Y Prismatic LFP |
8.1.22. | Tesla Model S P85D |
8.1.23. | Tesla Model S Plaid |
8.1.24. | Tesla 4680 Pack |
8.1.25. | Tesla Cybertruck |
8.1.26. | Toyota Prius PHEV |
8.1.27. | Toyota RAV4 PHEV |
8.1.28. | VW MEB Platform |
8.2. | Examples: Heavy Duty, Commercial Vehicles, and Other Vehicles |
8.3. | Akasol (BorgWarner) |
8.4. | MAN BatteryPack |
8.5. | Microvast & REE |
8.6. | John Deere (Kreisel) |
8.7. | Romeo Power |
8.8. | Superbike Battery Holder |
8.9. | Vertical Aerospace |
8.10. | Voltabox |
8.11. | Xerotech |
8.12. | XING Mobility |
8.13. | XING Mobility Cell-to-pack and Cell-to-chassis |
9. | FORECASTS AND ASSUMPTIONS |
9.1. | EV Materials Forecast: Methodology & Assumptions |
9.2. | IDTechEx Model Database |
9.3. | Average Battery Capacity Forecast: Car, 2W, 3W, Microcar, Bus, Van, and Truck |
9.4. | EV Battery Demand Market Share Forecast (GWh) |
9.5. | Cathode Material Demand Forecast 2021-2035 (kg) |
9.6. | Price Assumptions |
9.7. | Critical Cathode Material Value Forecast 2021-2035 (US$) |
9.8. | Anode Material Demand Forecast for EVs 2021-2035 (kg) |
9.9. | Anode Material Prices |
9.10. | Anode Material Market Value Forecast for EVs 2021-2035 (US$) |
9.11. | Battery Cell Material Demand Forecast for EVs 2021-2035 (kg) |
9.12. | Battery Cell Material Market Value Forecast for EVs 2021-2035 (US$) |
9.13. | Battery Pack Material Demand Forecast for EVs 2021-2035 (kg) |
9.14. | Battery Pack Materials Price Assumptions |
9.15. | Battery Pack Material Market Value Forecast for EVs 2021-2035 (US$) |
9.16. | Total Battery Cell and Pack Materials Forecast by Material 2021-2035 (kg) |
9.17. | Total Battery Cell and Pack Materials Forecast by Vehicle Type 2021-2035 (kg) |
9.18. | Total Battery Cell and Pack Materials Market Value Forecast 2021-2035 (US$) |