This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | 5G, next generation cellular communications network |
1.2. | Evolution of the cellular base station: overview |
1.3. | 5G station installation forecast (2020-2030) by frequency |
1.4. | 5G station instalment number forecast (2020-2030) by type of cell (macro, micro, pico/femto) |
1.5. | MIMO size forecast (2020-2030) |
1.6. | Antenna elements forecast |
1.7. | Antenna PCB material forecast |
1.8. | GaN to win in sub-6 GHz 5G |
1.9. | Semiconductor choice forecast |
1.10. | Semiconductor forecast (2020-2030) for power amplifiers (GaN, LDMOS, SiGe/Si) by die area |
1.11. | Why metal sintering? |
1.12. | Die attach forecasts |
1.13. | Power forecast for 5G |
1.14. | Total TIM forecast for 5G stations |
1.15. | Smartphone thermal interface material (TIM) estimate summary |
1.16. | Heat spreader material forecast in smartphones by area (excl. display) |
2. | INTRODUCTION |
2.1. | 5G, next generation cellular communications network |
2.2. | Evolution of mobile communications |
2.3. | What can 5G offer? High speed, massive connection and low latency |
2.4. | Differences between 4G and 5G |
2.5. | 5G is suitable for vertical applications |
2.6. | 5G for consumers overview |
2.7. | Two types of 5G: sub-6 GHz and high frequency |
2.8. | Sub-6 GHz will be the first option for most operators |
2.9. | Why does 5G have lower latency radio transmissions? |
2.10. | The main technique innovations |
2.11. | 5G is live globally |
2.12. | 5G Capex 2020-2025 |
2.13. | 5G user equipment landscape |
2.14. | 5G smartphone overview |
2.15. | 5G investments at three stages |
2.16. | Case study: expected 5G investment for infrastructure in China |
2.17. | Key players in 5G technologies |
2.18. | 5G patents by countries |
2.19. | 5G patents by companies |
2.20. | Global trends and new opportunities in 5G |
2.21. | Thermal Management for 5G |
3. | BASE STATION ARCHITECTURE |
3.1. | Shift to higher frequencies shrinks the antenna |
3.2. | 5G station installation forecast (2020-2030) by frequency |
3.3. | 5G base station types |
3.4. | Base station architecture: C-RAN |
3.5. | Evolution of the cellular base station: overview |
3.6. | 5G trend: small cells (picocell and femtocell) |
3.7. | 5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto) |
3.8. | LTE antenna tear down |
4. | ANTENNA DESIGN |
4.1.1. | Massive MIMO requires active antennas |
4.1.2. | MIMO size forecast (2020-2030) |
4.1.3. | Approach to beam forming (hybrid vs analogue vs digital) |
4.1.4. | Approach to beam forming |
4.1.5. | Radio Frequency Front End (RFFE) Module |
4.1.6. | Density of components in RFFE |
4.1.7. | RF module design architecture |
4.1.8. | Some examples from satellite and phased-array radar |
4.1.9. | The same RF IC is being adopted for 5G |
4.1.10. | IDT (Renesas) 28 GHz 2x2 4-channel SiGe beamforming IC |
4.1.11. | NXP: 4-channel Tx/Rx beamforming IC in SiGe with low EVM |
4.1.12. | Anokiwave: Tx/Rx 4-element 3GPP 5G band all in silicon |
4.1.13. | Anokiwave: 256-element all-silicon array |
4.1.14. | Sivers IMA: dual-quad 5G dual-polarized beam forming IC |
4.1.15. | Analog: a 16-channel dual polarized beam-forming IC? |
4.1.16. | SoC Microwave: single-channel GaAs HEMT devices |
4.1.17. | 28 GHz all-silicon 64 dual polarized antenna |
4.1.18. | Planar vs non-planar design |
4.1.19. | Non-planar design |
4.1.20. | Planar design |
4.1.21. | Advanced packaging techniques |
4.1.22. | NEC's new antenna technology |
4.2. | 5G Use Cases and Forecast |
4.2.1. | Sub-6 GHz antenna teardown |
4.2.2. | mmWave antenna teardown |
4.2.3. | Sub-6 GHz and mmWave in one unit |
4.2.4. | Main suppliers of 5G active antennas unit (AAU) |
4.2.5. | Case study: NEC 5G Radio Unit |
4.2.6. | Case study: Nokia AirScale mMIMO Adaptive Antenna |
4.2.7. | Case study: Samsung 5G Access solution for SK telecom |
4.2.8. | Antenna elements forecast |
4.2.9. | Antenna PCB material forecast |
4.2.10. | Power amplifier and beamforming component forecast |
4.2.11. | Thermal considerations for cell towers and base stations |
4.2.12. | Thermal considerations for small cells |
4.2.13. | Nokia's base station liquid cooling |
4.2.14. | ZTE's award winning base station design |
4.2.15. | Antenna array design is just one consideration |
5. | THE CHOICE OF SEMICONDUCTOR TECHNOLOGY FOR 5G |
5.1.1. | Motivation of 5G: increasing the bandwidth |
5.1.2. | The choice of the semiconductor technology |
5.1.3. | Key semiconductor properties |
5.1.4. | Key semiconductor technology benchmarking |
5.1.5. | The choice of the semiconductor technology |
5.1.6. | Power vs frequency map of power amplifier technologies |
5.1.7. | GaAs vs GaN for RF power amplifiers |
5.1.8. | GaAs vs GaN: power density and footprint |
5.1.9. | GaAs vs GaN: reliability and dislocation density |
5.1.10. | So what is the main drawback of GaN? |
5.1.11. | Why GaN and GaAs both have their place? |
5.2. | The GaN Market for RF in 5G |
5.2.1. | GaN-on-Si, SiC or Diamond for RF |
5.2.2. | GaN suppliers |
5.2.3. | Ampleon |
5.2.4. | Analog Devices |
5.2.5. | Cree-Wolfspeed |
5.2.6. | Wolfspeed GaN-on-SiC adoption |
5.2.7. | Infineon |
5.2.8. | MACOM |
5.2.9. | Mitsubishi Electric |
5.2.10. | Northrop Grumman |
5.2.11. | NXP Semiconductor |
5.2.12. | Qorvo |
5.2.13. | Qorvo sub-6 GHz products |
5.2.14. | Qorvo mmWave products |
5.2.15. | Qorvo and Gapwaves mmWave antenna |
5.2.16. | Qorvo 39 GHz antenna |
5.2.17. | RFHIC |
5.2.18. | Sumitomo Electric |
5.2.19. | Summary of RF GaN Suppliers |
5.2.20. | Summary of RF GaN market for 5G |
5.3. | GaN to dominate Sub-6 GHz? |
5.3.1. | LDMOS dominates but will struggle to reach even sub-6 GHz 5G |
5.3.2. | GaN to win in sub-6 GHz 5G |
5.4. | A Different Story for mmWave |
5.4.1. | The situation at mmWave 5G is drastically different |
5.4.2. | Solving the power challenge: high antenna gain increases distance |
5.4.3. | Shift to higher frequencies shrinks the antenna |
5.4.4. | Major technological change: from broadcast to directional communication |
5.4.5. | Examples of MMIC RFFEs for 5G: Qorvo GaN FEM |
5.4.6. | Examples of silicon based beam forming ICs for mmWave 5G |
5.4.7. | Examples of SiGe based beam forming ICs for mmWave 5G |
5.5. | Semiconductor Outlook for 5G |
5.5.1. | Semiconductor choice forecast |
5.5.2. | Semiconductor forecast (2020-2030) for amplifiers (GaN, LDMOS, SiGe/Si) by die area |
6. | CURRENT AND FUTURE DIE ATTACHMENT: THE ROLE OF METAL SINTERING OR FILLED EPOXY |
6.1.1. | Air cavity vs plastic overmold packages |
6.1.2. | Packaging LDMOS power amplifiers |
6.1.3. | Packaging GaN power amplifiers |
6.1.4. | Packaging GaAs power amplifiers |
6.1.5. | Benchmarking CTE and thermal conductivity of various packaging materials |
6.1.6. | LTCC and HTCC packages |
6.1.7. | HTCC metal-ceramic package |
6.1.8. | LTCC RF transitions in packages |
6.1.9. | Built-in Cu slugs in GaN packages |
6.1.10. | Current die attach technology choice for RF GaN PAs |
6.1.11. | Emerging die attach technology choice for RF GaN PAs |
6.1.12. | Metal sintering vs soldering |
6.1.13. | Why metal sintering? |
6.1.14. | Properties of Ag sintered or epoxy die attach materials |
6.2. | Suppliers of Sintering Pastes |
6.2.1. | Suppliers for metal sintering pastes |
6.2.2. | Suppliers for metal sintering pastes: Alpha Assembly |
6.2.3. | Suppliers for metal sintering pastes: Henkel |
6.2.4. | Henkel: Ag sintering paste |
6.2.5. | Heraeus: sintered Ag die attach paste |
6.2.6. | Suppliers for metal sintering pastes: Heraeus |
6.2.7. | Kyocera: mixed nano/micro pressure-less sintering die attach paste |
6.2.8. | Suppliers for metal sintering pastes: Dowa |
6.2.9. | Namics: a variety of Ag die attach paste |
6.2.10. | Indium Corp: nano Ag pressureless sinter paste |
6.2.11. | Suppliers for metal sintering pastes: Amo Green |
6.2.12. | Toyo Chem: Sintered die attach paste |
6.2.13. | Bando Chemical: pressure-less nano Ag sintering paste |
6.2.14. | Suppliers for metal sintering pastes: Nihon Handa |
6.2.15. | Nihon Superior: nano silver for sintering |
6.2.16. | Heraeus and Nihon Handa cross license |
6.2.17. | Hitachi: Cu sintering paste |
6.2.18. | Cu sintering: characteristics |
6.2.19. | Reliability of Cu sintered joints |
6.2.20. | Mitsui Mining: Nano copper pressured and pressure-less sintering under N2 environment |
6.2.21. | Pricing information on Ag Sintering, solder and TLPB |
6.2.22. | Automating the die attach for 5G power amplifiers |
6.2.23. | Palomar Technologies automated sintering |
6.2.24. | ASM AMICRA Microtechnologies |
6.2.25. | BE Semiconductor |
6.2.26. | Legacy and incumbency for device assembly |
6.3. | Forecast of Die Attach Materials |
6.3.1. | Die attach material forecasts by station size |
6.3.2. | Die attach mass for GaN and LDMOS forecast |
6.3.3. | Sintering market value forecast |
7. | IN-PACKAGE HEAT DISSIPATION |
7.1. | Thermal conductivity of key materials in a package |
7.2. | 2D and 3D package architectures |
7.3. | 2D packages: impact of system architecture on heat dissipation |
7.4. | 3D package: using Ag paste to dissipate heat from the top |
7.5. | Silver paste based heat dissipation 'chimneys' within packages |
7.6. | Silver paste based heat dissipation 'chimneys' within packages |
7.7. | Creating thermal pathways using conductive inks |
8. | THERMAL INTERFACE MATERIALS |
8.1. | TIM Form and Material Overview |
8.1.1. | TIM considerations |
8.1.2. | Thermal interface material by physical form |
8.1.3. | Assessment and considerations of liquid products |
8.1.4. | Ten types of thermal interface material |
8.1.5. | Properties of thermal interface materials |
8.1.6. | 1. Pressure-sensitive adhesive tapes |
8.1.7. | 2. Thermal liquid adhesives |
8.1.8. | 3. Thermal greases |
8.1.9. | Problems with thermal greases |
8.1.10. | Thermal greases |
8.1.11. | Viscosity of thermal greases |
8.1.12. | Technical data on thermal greases |
8.1.13. | The effect of filler, matrix and loading on thermal conductivity |
8.1.14. | 4. Thermal gels |
8.1.15. | 5. Thermal pastes |
8.1.16. | Technical data on gels and pastes |
8.1.17. | 6. Elastomeric pads |
8.1.18. | Advantages and disadvantages of elastomeric pads |
8.1.19. | 7. Phase Change Materials (PCMs) |
8.1.20. | Phase change materials - overview |
8.1.21. | Operating temperature range of commercially available phase change materials |
8.2. | Advanced Materials as Thermal Interface Materials |
8.2.1. | Advanced materials for TIM - introduction |
8.2.2. | Achieving through-plane alignment |
8.2.3. | Summary of TIM utilising advanced carbon materials |
8.3. | Graphite |
8.3.1. | Graphite - overview |
8.3.2. | Graphite sheets: through-plane limitations |
8.3.3. | Graphite sheets: interfacing with heat source and disrupting alignment |
8.3.4. | Panasonic - Pyrolytic Graphite Sheet (PGS) |
8.3.5. | Progressions in vertical graphite |
8.3.6. | Vertical graphite with additives |
8.3.7. | Graphite pastes |
8.4. | Carbon Fiber |
8.4.1. | Carbon fiber as a thermal interface material - introduction |
8.4.2. | Carbon fiber as TIM in smartphones |
8.4.3. | Magnetic alignment of carbon fiber TIM |
8.4.4. | Other routes to CF alignment in a TIM |
8.4.5. | Carbon fiber with other conductive additives |
8.5. | Carbon Nanotubes (CNT) |
8.5.1. | Introduction to Carbon Nanotubes (CNT) |
8.5.2. | Challenges with VACNT as TIM |
8.5.3. | Transferring VACNT arrays |
8.5.4. | Notable CNT TIM examples from commercial players |
8.6. | Graphene |
8.6.1. | Graphene in thermal management: application roadmap |
8.6.2. | Graphene heat spreaders: commercial success |
8.6.3. | Graphene heat spreaders: performance |
8.6.4. | Graphene heat spreaders: suppliers multiply |
8.6.5. | Graphene as a thermal paste additive |
8.6.6. | Graphene as additives to thermal interface pads |
8.7. | Ceramic Advancements |
8.7.1. | Ceramic trends: spherical variants |
8.7.2. | Denka: functional fine particles for thermal management |
8.7.3. | Denka |
8.7.4. | Showa Denko: transition from flake to spherical type filler |
8.8. | Boron Nitride Nanostructures |
8.8.1. | Introduction to nano boron nitride |
8.8.2. | BNNT players and prices |
8.8.3. | BNNT property variation |
8.8.4. | BN nanostructures in thermal interface materials |
8.9. | TIM in 5G Antenna and BBU |
8.9.1. | Board-level heat dissipation: thermal interface materials |
8.9.2. | Indium foils as a good board-level TIM option |
8.9.3. | A simple description to the anatomy of a base station |
8.9.4. | Background info on baseband processing unit and remote radio head |
8.9.5. | Path evolution from baseband unit to antenna |
8.9.6. | TIM example: Samsung 5G access point |
8.9.7. | TIM example: Samsung outdoor CPE unit |
8.9.8. | TIM example: Samsung indoor CPE unit |
8.9.9. | TIM forecast for 5G antenna |
8.9.10. | The 6 components of a baseband processing unit |
8.9.11. | BBU parts I: TIM area in the main control board |
8.9.12. | BBU parts II & III: TIM area in the baseband processing board & the transmission extension board |
8.9.13. | BBU parts IV & V: TIM area in radio interface board & satellite-card board |
8.9.14. | BBU parts VI: TIM area in the power supply board |
8.9.15. | Summary |
8.9.16. | TIM for 5G BBU |
8.10. | 5G Power |
8.10.1. | Power consumption in 5G |
8.10.2. | Challenges to the 5G power supply industry |
8.10.3. | The dawn of smart power? |
8.10.4. | Power consumption forecast for 5G |
8.10.5. | TIM forecast for power supplies |
8.11. | Total TIM Forecast for 5G |
8.11.1. | Total TIM forecast for 5G stations |
9. | THERMAL STRATEGIES FOR ACCESS POINTS |
9.1. | Access points |
9.2. | Components affected by temperature |
9.3. | Boyd's take on thermal design for an access point |
9.4. | Cradlepoint's wideband adapter |
9.5. | Huawei 5G CPE unit |
9.6. | ZTE 5G Wi-Fi router |
9.7. | Developments for access points |
10. | THERMAL MANAGEMENT FOR MOBILE DEVICES |
10.1.1. | 5G phones overheating |
10.1.2. | 5G smartphone chipsets: which OEMs have mmWave |
10.1.3. | mmWave costs more too |
10.1.4. | Qualcomm's 5G antenna |
10.1.5. | Apple's 5G delay and Intel withdraw from market |
10.2. | Thermal Management Approaches for 5G Mobile Devices |
10.2.1. | Thermal throttling |
10.2.2. | Materials selection |
10.2.3. | Heat dissipation |
10.2.4. | Heat sinks and heat spreaders |
10.2.5. | Heat pipes/ vapour chambers |
10.2.6. | Vapour chambers: OEMs |
10.2.7. | Emerging role of vapour chambers |
10.2.8. | OEM thermal management strategies |
10.2.9. | Samsung's cooling solution |
10.2.10. | Huawei |
10.2.11. | Nubia Red Magic 5G gaming phone |
10.2.12. | Lenovo demonstrate the first 5G laptop |
10.2.13. | Thermoelectric Cooling (TEC) |
10.2.14. | Smartphone cooling now and in the future |
10.3. | Thermal Materials for Mobile Devices |
10.3.1. | Introduction |
10.3.2. | Thermal management differences: 4G vs 5G smartphones |
10.3.3. | Example images of thermal management materials |
10.3.4. | Galaxy 3: teardown and how TIM is used |
10.3.5. | Galaxy S6: teardown and how TIM is used |
10.3.6. | Galaxy S7: teardown and how TIM is used |
10.3.7. | Galaxy S7: teardown and how TIM is used |
10.3.8. | Galaxy S9: teardown and how TIM is used |
10.3.9. | Galaxy S9: teardown and how TIM is used |
10.3.10. | Galaxy note 9 carbon water cooling system |
10.3.11. | Samsung S10 and S10e: teardown and how TIM is used |
10.3.12. | Galaxy S6 and S7 TIM area estimates |
10.3.13. | Oppo R17: teardown and how TIM is used |
10.3.14. | Huawei Mate Pro 30: teardown and how TIM is used |
10.3.15. | Huawei Mate Pro 20: teardown and how TIM is used |
10.3.16. | iPhone 4: teardown and how TIM is used |
10.3.17. | iPhone 5: teardown and how TIM is used |
10.3.18. | iPhone 7: teardown and how TIM is used |
10.3.19. | iPhone X: teardown and how TIM is used |
10.3.20. | LG v50 ThinQ 5G |
10.3.21. | LG v60 ThinQ 5G |
10.3.22. | RedMagic 5G |
10.3.23. | Samsung Galaxy S10 5G |
10.3.24. | Samsung Galaxy S20 5G |
10.3.25. | Samsung Galaxy Note 10+ 5G |
10.3.26. | Smartphone thermal material estimate summary |
10.3.27. | Heat spreader material forecast in smartphones by area (excl. display) |
11. | SUMMARY OF REPORT FORECASTS |
11.1. | 5G station installation forecast (2020-2030) by frequency |
11.2. | 5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto) |
11.3. | MIMO size forecast (2020-2030) |
11.4. | Antenna elements forecast |
11.5. | Antenna PCB material forecast |
11.6. | Power amplifier and beamforming component forecast |
11.7. | Semiconductor forecast (2020-2030) for amplifiers (GaN, LDMOS, SiGe/Si) by die area |
11.8. | Die attach material forecasts by station size |
11.9. | Die attach mass for GaN and LDMOS forecast |
11.10. | Sintering market value forecast |
11.11. | TIM forecast for 5G antenna |
11.12. | TIM for 5G BBU |
11.13. | Power consumption forecast for 5G |
11.14. | TIM forecast for power supplies |
11.15. | Total TIM forecast for 5G stations |
11.16. | Heat spreader material forecast in smartphones by area (excl. display) |
Slides | 382 |
---|