1. | EXECUTIVE SUMMARY |
1.1. | What are fire protection materials? |
1.2. | Thermal runaway and fires in electric vehicles |
1.3. | Battery fires and related recalls (automotive) |
1.4. | Automotive fire incidents: OEMs and causes |
1.5. | EV fires compared to ICEs |
1.6. | The impact of solid-state batteries |
1.7. | Regulations |
1.8. | Automotive market share of cell types |
1.9. | Thermal runaway in cell-to-pack |
1.10. | Fire protection materials: main categories |
1.11. | Material comparison |
1.12. | Density vs thermal conductivity - thermally insulating |
1.13. | Density vs thermal conductivity - cylindrical cell systems |
1.14. | Material intensity (kg/kWh) |
1.15. | Pricing comparison in a battery (inter-cell) |
1.16. | Pricing comparison in a battery (pack-level) |
1.17. | Material market shares |
1.18. | Market shares in 2022 and 2032 |
1.19. | Cell-level fire protection materials forecast (mass) |
1.20. | Pack-level fire protection materials forecast (mass) |
1.21. | Total fire protection materials forecast (mass) |
1.22. | Total fire protection materials forecast (value) |
1.23. | Total fire protection materials by vehicle (value) |
1.24. | Company profiles |
2. | INTRODUCTION |
2.1.1. | Thermal runaway and fires in EVs |
2.2. | Fires and recalls in EVs |
2.2.1. | Battery fires and related recalls (automotive) |
2.2.2. | GM's Bolt recall |
2.2.3. | Hyundai Kona recall |
2.2.4. | VW PHEV recall |
2.2.5. | Ford Kuga PHEV recall |
2.2.6. | Automotive fire incidents: OEMs and causes |
2.2.7. | Electric scooter fires in India |
2.2.8. | Electric bus fires |
2.2.9. | EV fires compared to ICEs |
2.2.10. | Severity of EV fires |
2.2.11. | EV fires: when do they happen? |
2.3. | Causes and stages of thermal runaway |
2.3.1. | Causes of failure |
2.3.2. | The nail penetration test |
2.3.3. | Stages of thermal runaway |
2.3.4. | Cell chemistry and stability |
2.3.5. | Thermal runaway propagation |
2.3.6. | The impact of solid-state batteries |
2.4. | Regulations |
2.4.1. | Regulations |
2.4.2. | China |
2.4.3. | Europe |
2.4.4. | US |
2.4.5. | India |
2.4.6. | What does it all mean for EV battery design? |
3. | CELL AND PACK DESIGN |
3.1.1. | Cell types |
3.1.2. | Which cell format to choose? |
3.1.3. | Automotive market share of cell types |
3.1.4. | Differences between cell, module, and pack |
3.1.5. | What's in a battery module? (pouch/prismatic) |
3.1.6. | What's in a battery module? (cylindrical) |
3.1.7. | What's in an EV battery pack? |
3.2. | Cell-to-pack, cell-to-chassis, and large cell formats |
3.2.1. | What is cell-to-pack? |
3.2.2. | Drivers and challenges for cell-to-pack |
3.2.3. | What is cell-to-chassis/body? |
3.2.4. | Gravimetric energy density and cell-to-pack ratio |
3.2.5. | Outlook for cell-to-pack & cell-to-body designs |
3.2.6. | Thermal runaway in cell-to-pack |
3.2.7. | Material intensity changes in cell-to-pack |
4. | FIRE PROTECTION MATERIALS |
4.1. | Introduction |
4.1.1. | What are fire protection materials? |
4.1.2. | Thermally conductive or thermally insulating? |
4.1.3. | Fire protection materials: main categories |
4.1.4. | Composition and application of each material category |
4.1.5. | Advantages and disadvantages |
4.1.6. | Market maturity, OEM use-cases, and suppliers |
4.1.7. | Material comparison |
4.1.8. | Material market shares |
4.1.9. | Market shares in 2022 and 2032 |
4.2. | Material benchmarking: thermal, electrical, and mechanical properties |
4.2.1. | Thermal conductivity comparison |
4.2.2. | Density comparison |
4.2.3. | Density vs thermal conductivity - thermally insulating |
4.2.4. | Density vs thermal conductivity - cylindrical cell systems |
4.2.5. | Dielectric strength comparison |
4.2.6. | Fire protection temperature comparison |
4.2.7. | Material intensity (kg/kWh) |
4.3. | Material benchmarking: costs |
4.3.1. | Pricing comparison: volumetric and gravimetric |
4.3.2. | Pricing comparison in a battery (inter-cell) |
4.3.3. | Pricing comparison in a battery (pack-level) |
4.4. | Ceramics and other non-wovens |
4.4.1. | Ceramic blankets/papers |
4.4.2. | Alkegen |
4.4.3. | Morgan Advanced Materials |
4.5. | Mica |
4.5.1. | Mica sheets |
4.5.2. | Elmelin |
4.5.3. | Von Roll |
4.6. | Aerogels |
4.6.1. | Why aerogels? |
4.6.2. | Aerogels |
4.6.3. | Historic uptake |
4.6.4. | Aspen Aerogels |
4.6.5. | JIOS Aerogel |
4.6.6. | Notable new entrants |
4.6.7. | SAIC/GM: Aerogels |
4.7. | Coatings |
4.7.1. | Coatings (intumescent and other) |
4.7.2. | Henkel |
4.7.3. | Parker Lord |
4.7.4. | PPG |
4.7.5. | Sika |
4.8. | Encapsulants (excluding foams) |
4.8.1. | Encapsulants/potting |
4.8.2. | DEMAK - resin potting for batteries |
4.8.3. | ELANTAS |
4.8.4. | Epoxies, Etc. |
4.8.5. | Huntsman |
4.8.6. | Von Roll |
4.9. | Encapsulating foams |
4.9.1. | Foams |
4.9.2. | Asahi Kasei - Cell Holder Foams |
4.9.3. | CHT Silicones |
4.9.4. | Dow Silicones |
4.9.5. | Elkem |
4.9.6. | H.B. Fuller |
4.9.7. | H.B. Fuller |
4.9.8. | Parker Lord |
4.9.9. | Zotefoams - Nitrogen Foam |
4.10. | Compression pads with fire protection |
4.10.1. | Compression pads |
4.10.2. | Dow |
4.10.3. | Rogers Corporation |
4.10.4. | Rogers Corporation |
4.10.5. | Saint-Gobain |
4.11. | Phase change materials |
4.11.1. | Phase change materials (PCMs) |
4.11.2. | Phase change materials - players |
4.11.3. | PCMs - players in EVs |
4.11.4. | AllCell (Beam Global) |
4.11.5. | PCMs - use-case and outlook |
4.12. | Tapes |
4.12.1. | Tapes for fire protection |
4.12.2. | ATP Adhesive Systems |
4.12.3. | Avery Denison |
4.12.4. | Rogers |
4.13. | Other fire protection materials |
4.13.1. | Alternative thermal barriers |
4.13.2. | 3M - thermal barriers |
4.13.3. | ADA Technologies |
4.13.4. | AOK Technology |
4.13.5. | Armacell |
4.13.6. | Covestro - flame-retardant plastics |
4.13.7. | DuPont - Nomex |
4.13.8. | H.B. Fuller - flame-resistant pack seal |
4.13.9. | HeetShield - ultra-thin insulations |
4.13.10. | KULR Technology - NASA's solution |
4.13.11. | ITW Formex |
4.13.12. | LG Chem - flame retardant material |
4.13.13. | svt Group |
4.14. | Summary |
4.14.1. | Fire protection materials outlook |
5. | IMMERSION COOLING FOR EV BATTERIES |
5.1. | Immersion cooling: introduction |
5.2. | Immersion cooling fluid requirements |
5.3. | Players: immersion fluids for EVs (1) |
5.4. | Players: immersion fluids for EVs (2) |
5.5. | Immersion fluids: density and thermal conductivity |
5.6. | Immersion fluids: summary |
5.7. | SWOT analysis: immersion cooling for EVs |
5.8. | What does it mean for fire protection materials? |
6. | FIRE PROTECTION MATERIAL USE-CASES |
6.1. | Use-cases: automotive |
6.1.1. | Faraday Future FF91 |
6.1.2. | Ford Mustang Mach-E |
6.1.3. | Hyundai E-GMP |
6.1.4. | Jaguar I-PACE |
6.1.5. | MG ZS |
6.1.6. | Mercedes EQS |
6.1.7. | Mercedes GLC300e PHEV |
6.1.8. | Polestar |
6.1.9. | Rivian |
6.1.10. | Tesla 4680 pack |
6.1.11. | Tesla Model 3/Y |
6.1.12. | Tesla Model 3/Y prismatic LFP pack |
6.1.13. | Tesla Model S P85D |
6.1.14. | Tesla Model S Plaid |
6.1.15. | VW MEB Platform |
6.2. | Use-cases: heavy duty and commercial vehicles |
6.2.1. | Ford Transit |
6.2.2. | Lion Electric - self extinguishing modules |
6.2.3. | Nissan e-NV200 |
6.2.4. | Romeo Power |
6.2.5. | Voltabox |
6.2.6. | Xerotech |
6.2.7. | XING Mobility |
6.3. | Use-cases: other |
6.3.1. | Cadenza Innovation - stationary energy storage |
6.3.2. | Hero Maxi (lead-acid) |
6.3.3. | Ola Hyperdrive battery |
7. | BATTERY PACK ENCLOSURES |
7.1. | Impact of enclosure material on fire protection |
7.2. | Lightweighting battery enclosures |
7.3. | From steel to aluminum |
7.4. | Towards composite enclosures? |
7.5. | Multi-material battery enclosures |
7.6. | EMI shielding for composite enclosures |
7.7. | UL standard for battery enclosures |
7.8. | SABIC: fire retardant battery enclosure |
8. | FORECASTS |
8.1. | EV battery demand forecast (GWh) |
8.2. | Methodology: material intensity |
8.3. | Methodology: cell formats |
8.4. | Cell-level fire protection materials forecast (mass) |
8.5. | Pack-level fire protection materials forecast (mass) |
8.6. | Total fire protection materials forecast (mass) |
8.7. | Material pricing |
8.8. | Total fire protection materials forecast (value) |
8.9. | Fire protection materials forecast by vehicle type (mass) |
8.10. | Total fire protection materials by vehicle (value) |
9. | COMPANY PROFILES |
9.1. | Von Roll |
9.2. | FUCHS |
9.3. | Axalta |
9.4. | Cadenza Innovation |
9.5. | Johnson Controls |
9.6. | XING Mobility |
9.7. | ADA Technologies |
9.8. | Xerotech |
9.9. | e-Mersiv |
9.10. | KULR Technology |
9.11. | Engineered Fluids |
9.12. | Solvay Specialty Polymers |
9.13. | Armacell |
9.14. | JIOS Aerogel |
9.15. | SABIC |
9.16. | Henkel |
9.17. | Aspen Aerogels |
9.18. | Asahi Kasei |
9.19. | Parker Lord |
9.20. | Elkem |
9.21. | Romeo Power |
9.22. | Beam Global/AllCell |
9.23. | Rogers Corporation |
9.24. | Pyrophobic Systems |
9.25. | H.B. Fuller |