1. | EXECUTIVE SUMMARY |
1.1. | Introduction to Thermal Management |
1.2. | Optimal Temperatures for Multiple Components |
1.3. | Impact of External Ambient Temperature and Climate Control |
1.4. | Heat Pumps for BEVs Forecast |
1.5. | Analysis of Battery Cooling Methods |
1.6. | Future Global Trends in OEM Cooling Methodologies |
1.7. | Adoption of Cooling Methodologies Forecast |
1.8. | Immersion Fluids: Benchmarking |
1.9. | Immersion Fluid Volume Forecast |
1.10. | Summary of Key Trends for Liquid Cooling |
1.11. | TIM for EV Battery Packs: Forecast by Vehicle Segment |
1.12. | Battery Fires and Related Recalls in 2020 |
1.13. | Regulation Changes |
1.14. | Fire Retardant Battery Materials Benchmark |
1.15. | Fire Protection Materials Forecast |
1.16. | Electric Motors: Permanent Magnet vs Alternatives |
1.17. | Electric Motor Unit Forecast |
1.18. | Motor Cooling Technology: OEM Strategies |
1.19. | Power Electronics in Electric Vehicles |
1.20. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
1.21. | The Transition to Silicon Carbide |
1.22. | Power Electronics Inverter Forecast |
1.23. | Traditional Power Module Packaging |
2. | INTRODUCTION |
2.1. | Introduction to Thermal Management |
2.2. | Industry Terms |
2.3. | Optimal Temperatures for Multiple Components |
3. | IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE |
3.1. | Range Calculations |
3.2. | Impact of Ambient Temperature and Climate Control |
3.3. | Model Comparison with Ambient Temperature |
3.4. | Model Comparison with Climate Control |
3.5. | Summary |
4. | INNOVATIONS IN CABIN HEATING |
4.1. | Holistic Vehicle Thermal Management |
4.2. | Technology Timeline |
4.3. | PTC vs Heat Pump |
4.4. | Recent EVs with Heat Pumps |
4.5. | Heat Pumps for BEVs Forecast |
4.6. | Further Innovations |
4.7. | Advantages of Sophisticated Thermal Management |
4.8. | Thermal Management Advanced Control: Key Players and Technologies |
5. | THERMAL MANAGEMENT OF LI-ION BATTERIES IN ELECTRIC VEHICLES |
5.1. | Current Technologies and OEM Strategies |
5.1.1. | Introduction to EV Battery Thermal Management |
5.1.2. | Material Opportunities In and Around a Battery Pack |
5.1.3. | Active vs Passive Cooling |
5.1.4. | Passive Battery Cooling Methods |
5.1.5. | Active Battery Cooling Methods |
5.1.6. | Air Cooling |
5.1.7. | Liquid Cooling |
5.1.8. | Liquid Cooling: Design Options |
5.1.9. | Liquid Cooling: Alternative Fluids |
5.1.10. | Liquid Cooling: Large OEM Announcements |
5.1.11. | Refrigerant Cooling |
5.1.12. | Hyundai's Timeline to Refrigerant Cooling |
5.1.13. | Coolants: Comparison |
5.1.14. | Cooling Strategy Thermal Properties |
5.1.15. | Analysis of Battery Cooling Methods |
5.1.16. | Main Incentives for Liquid Cooling |
5.1.17. | IONITY: a European Fast Charging Network |
5.1.18. | Shifting OEM Strategies - Liquid Cooling |
5.1.19. | Future Global Trends in OEM Cooling Methodologies |
5.1.20. | OEM Cooling Methodologies by Region |
5.1.21. | Adoption of Cooling Methodologies Forecast |
5.1.22. | IDTechEx Outlook |
5.2. | Immersion Cooling for Li-ion Batteries in EVs |
5.2.1. | Immersion Cooling: Introduction |
5.2.2. | Single-phase vs Two-phase Cooling |
5.2.3. | Immersion Cooling Fluids Requirements |
5.2.4. | Players: Immersion Fluids for Electric Vehicles (1) |
5.2.5. | Players: Immersion Fluids for Electric Vehicles (2) |
5.2.6. | Players: Immersion Fluids for Electric Vehicles (3) |
5.2.7. | Immersion Fluids: Density and Thermal Conductivity |
5.2.8. | Immersion Fluids: Operating Temperature |
5.2.9. | Immersion Fluids: Viscosity |
5.2.10. | Immersion Fluids: Costs |
5.2.11. | Immersion Fluids: Summary |
5.2.12. | Players: XING Mobility, 3M and Castrol |
5.2.13. | Players: Rimac and Solvay |
5.2.14. | Players: M&I Materials and Faraday Future |
5.2.15. | Players: Exoès, e-Mersiv and FUCHS Lubricants |
5.2.16. | Players: Kreisel and Shell |
5.2.17. | McLaren Speedtail and Artura |
5.2.18. | Mercedes-AMG |
5.2.19. | SWOT Analysis - Immersion Cooling for EVs |
5.2.20. | Immersion Market Adoption Forecast |
5.2.21. | Immersion Fluid Volume Forecast |
5.3. | Phase Change Materials (PCMs) |
5.3.1. | Phase Change Materials (PCMs) Emerging for EVs |
5.3.2. | PCM Categories and Pros and Cons |
5.3.3. | Typical Materials |
5.3.4. | Phase Change Materials - Overview |
5.3.5. | Phase Change Materials - Overview (2) |
5.3.6. | Operating Temperature Range of Commercial PCMs |
5.3.7. | PCMs: Players in EVs |
5.3.8. | Phase Change Material as Thermal Energy Storage |
5.3.9. | PCM vs Battery Case Study |
5.3.10. | Player: Sunamp |
5.4. | Heat Spreaders and Cooling Plates |
5.4.1. | Heat Spreaders or Interspersed Cooling Plates |
5.4.2. | Chevrolet Volt and Dana |
5.4.3. | Advanced Cooling Plates |
5.4.4. | Advanced Cooling Plates: Roll Bond Aluminium |
5.4.5. | Graphite Heat Spreaders |
5.5. | Other Interesting Developments |
5.5.1. | Active Cell-to-cell Cooling Solutions: Cylindrical |
5.5.2. | Printed Temperature Sensors and Heaters |
5.5.3. | Is Tab Cooling a Solution? |
5.5.4. | Thermoelectric Cooling |
5.5.5. | Skin Cooling: Aptera Solar EV |
5.6. | Thermal Management of EV Batteries: OEM Use-cases |
5.6.1. | Audi e-tron |
5.6.2. | Audi e-tron GT |
5.6.3. | BMW i3 |
5.6.4. | BYD Blade |
5.6.5. | Chevrolet Bolt |
5.6.6. | Faraday Future FF 91 |
5.6.7. | Hyundai Kona |
5.6.8. | Hyundai E-GMP |
5.6.9. | Jaguar I-PACE |
5.6.10. | MG ZS EV |
5.6.11. | Rivian |
5.6.12. | Romeo Power Thermal Management |
5.6.13. | Tesla Model S P85D |
5.6.14. | Tesla Model 3/Y |
5.6.15. | Tesla Eliminating the Battery Module |
5.6.16. | Toyota Prius PHEV |
5.6.17. | Toyota RAV4 PHEV |
5.6.18. | Voltabox |
5.6.19. | Xerotech |
5.7. | TIM for EV Battery Packs |
5.7.1. | Introduction to Thermal Management for EVs |
5.7.2. | TIM - Pack and Module Overview |
5.7.3. | TIM Application - Pack and Modules |
5.7.4. | TIM Application - Cell Format |
5.7.5. | Dow Battery Pack Materials |
5.7.6. | Henkel Battery Pack Materials |
5.7.7. | DuPont Battery Pack Materials |
5.7.8. | Key Properties for TIMs in EVs |
5.7.9. | Gap Pads in EV Batteries |
5.7.10. | Switching to Gap Fillers from Pads |
5.7.11. | Dispensing TIMs Introduction |
5.7.12. | Challenges for Dispensing TIM |
5.7.13. | Material Options and Market Comparison |
5.7.14. | The Silicone Dilemma for the Automotive Industry |
5.7.15. | Silicone Alternatives |
5.7.16. | Main Players and Considerations |
5.7.17. | Main Players and Recent Announcements (1) |
5.7.18. | Main Players and Recent Announcements (2) |
5.7.19. | EV Use-case: Audi e-tron |
5.7.20. | EV Use-case: Chevrolet Bolt |
5.7.21. | EV Use-case: Fiat 500e |
5.7.22. | EV Use-case: MG ZS EV |
5.7.23. | EV Use-case: Nissan Leaf |
5.7.24. | EV Use-case: Smart Fortwo (Mercedes) |
5.7.25. | EV Use-case: Tesla Model 3/Y |
5.7.26. | EV Use-cases: Tesla, Chevrolet, Hyundai |
5.7.27. | Tesla Eliminating the Battery Module |
5.7.28. | EV Use-case Summary |
5.7.29. | Commercial Benchmark for EV Battery TIMs |
5.7.30. | Battery and TIM Demand Trends |
5.7.31. | TIM for EV Battery Packs: Forecast by Vehicle Segment |
5.7.32. | TIM for EV Battery Packs: Forecast by TIM Type |
5.7.33. | Other Applications for TIM |
5.8. | Thermal Runaway Importance, Detection and Prevention |
5.8.1. | Thermal Runaway and Fires in EVs |
5.8.2. | Battery Fires and Related Recalls in 2020 |
5.8.3. | Battery Fires in South Korea |
5.8.4. | Causes of Battery Fires |
5.8.5. | EV Fires Compared to ICE |
5.8.6. | Causes of Failure |
5.8.7. | The Nail Penetration Test |
5.8.8. | Stages of Thermal Runaway |
5.8.9. | Cell Chemistry and Stability |
5.8.10. | Thermal Runaway Propagation |
5.8.11. | Many Considerations to Safety |
5.8.12. | Prevention of Battery Shorting: Soteria |
5.8.13. | Regulation Changes |
5.8.14. | What Level of Prevention? |
5.8.15. | Detecting Thermal Runaway in a Battery Pack |
5.8.16. | Gas Generation / detection |
5.8.17. | Opportunities for Sensors |
5.8.18. | Commercial Gas Sensing for Thermal Runaway Detection |
5.9. | Fire Protection Materials |
5.9.1. | Module and Pack Thermal Insulation Materials |
5.9.2. | Pack Level Prevention Materials |
5.9.3. | Emerging Fire Safety Solutions |
5.9.4. | Aerogels in EV battery packs |
5.9.5. | Aspen Aerogels US OEM Contract |
5.9.6. | Fire Resistant Coatings |
5.9.7. | Thermal Runaway Prevention: Cylindrical Cell-to-cell |
5.9.8. | 3M - Insulation Materials |
5.9.9. | ADA Technologies - Thermal Runaway Propagation Prevention Materials |
5.9.10. | Dow Silicone Solutions |
5.9.11. | DuPont |
5.9.12. | ITW Formex |
5.9.13. | Covestro Polycarbonates |
5.9.14. | Elkem Silicone Solutions |
5.9.15. | HeetShield - Ultra-Thin Insulations |
5.9.16. | H.B. Fuller |
5.9.17. | Fire Retardant Battery Materials Benchmark |
5.9.18. | Fire Retardant Battery Materials Outlook |
5.9.19. | Fire Protection Materials Forecast |
5.10. | Battery Enclosures |
5.10.1. | Lightweighting Battery Enclosures |
5.10.2. | Composite Battery Enclosures |
5.10.3. | Alternatives to Phenolic Resins |
5.10.4. | Composite Parts at a Scale to Drive Sustainable Transportation - TRB Lightweight Structures |
5.10.5. | Are Polymers Suitable Housings? |
5.10.6. | Towards Composite Enclosures? |
5.10.7. | Continental Structural Plastics - Honeycomb Technology |
6. | THERMAL MANAGEMENT IN ELECTRIC VEHICLE CHARGING STATIONS |
6.1. | Basics of electric vehicle charging mechanisms |
6.2. | Conductive Charging Types |
6.3. | How long does it take to charge an electric vehicle? |
6.4. | The trend towards DC fast charging |
6.5. | Fast Charging Gains - 300 kW Needed for Cars? |
6.6. | Thermal Considerations for Fast Charging |
6.7. | Liquid Cooled Charging Stations |
6.8. | Tritium - DC Charging Solution Provider |
6.9. | Cable Cooling to Achieve High Power Charging |
6.10. | Tesla Adopts Liquid Cooled Cable for its Supercharger |
6.11. | Tesla: Liquid Cooled Connector for Ultra Fast Charging |
6.12. | ITT Cannon Liquid Cooled Charging |
6.13. | Brugg eConnect Liquid Cooled Cables |
6.14. | Immersion Cooled Charging Stations |
7. | THERMAL MANAGEMENT OF ELECTRIC MOTORS |
7.1. | Motor Cooling Strategies |
7.1.1. | Electric Traction Motors: Types |
7.1.2. | Electric Motors: Permanent Magnet vs Alternatives |
7.1.3. | Electric Motor Unit Forecast |
7.1.4. | Cooling Electric Motors |
7.1.5. | Current OEM Strategies: Air Cooling |
7.1.6. | Current OEM Strategies: Oil Cooling |
7.1.7. | Ricardo's New Motor |
7.1.8. | Current OEM Strategies: Water-glycol Cooling |
7.1.9. | Electric Motor Thermal Management Overview |
7.1.10. | Cooling Technology: OEM Strategies |
7.1.11. | Motor Cooling Technology Outlook |
7.1.12. | Recent Advancements in Liquid Cooling |
7.1.13. | Emerging Technologies: Immersion Cooling |
7.1.14. | Emerging Technologies: Refrigerant Cooling |
7.1.15. | Emerging Technologies: Phase Change Materials |
7.1.16. | Potting & Encapsulation |
7.1.17. | Potting & Encapsulation: Players |
7.2. | Emerging Motor Developments |
7.2.1. | Radial Flux vs Axial Flux Motors |
7.2.2. | Axial Flux Motors: Interesting Players |
7.2.3. | List of Axial Flux Motor Players |
7.2.4. | In-Wheel Motors |
7.2.5. | DHX Ultra High-torque Motors |
7.2.6. | Equipmake: Spoke Geometry for PM Motors |
7.2.7. | Diabatix: Rapid Design of Cooling Components |
7.2.8. | Integrated Stator Housings |
7.2.9. | Integration with Vehicle Thermal Management |
7.3. | Thermal Management of EV Motors: OEM Use-cases |
7.3.1. | Audi e-tron |
7.3.2. | BMW i3 |
7.3.3. | Chevrolet Bolt |
7.3.4. | Hyundai E-GMP |
7.3.5. | Jaguar I-PACE |
7.3.6. | Nissan Leaf |
7.3.7. | Tesla Model S |
7.3.8. | Tesla Model 3 |
7.3.9. | Toyota Prius |
8. | THERMAL MANAGEMENT IN ELECTRIC VEHICLE POWER ELECTRONICS |
8.1. | Introduction |
8.1.1. | What is Power Electronics? |
8.1.2. | Power Electronics in Electric Vehicles |
8.1.3. | Power Electronics Device Ranges |
8.1.4. | Power Switches (Transistors) |
8.1.5. | Power Switch History |
8.1.6. | Wide-bandgap Semiconductors |
8.1.7. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
8.1.8. | Applications for Silicon Carbide & Gallium Nitride |
8.1.9. | Inverter Power Modules |
8.1.10. | Inverter Package Designs |
8.1.11. | Power Module Packaging Over the Generations |
8.1.12. | Traditional Power Module Packaging |
8.1.13. | Inverter Benchmarking |
8.1.14. | Module Packaging Material Dimensions |
8.1.15. | Power Electronics Cooling |
8.1.16. | Double-sided Cooling |
8.1.17. | Baseplate, Heat Sink, Encapsulation Materials |
8.1.18. | Automotive Power Module Leaders |
8.1.19. | Power Module Supply Chain & Innovations |
8.1.20. | The Transition to SiC |
8.1.21. | Power Electronics Inverter Forecast |
8.2. | Beyond Wire Bonds |
8.2.1. | Wire Bonds |
8.2.2. | Al Wire Bonds: A Common Failure Point |
8.2.3. | Advanced Wire Bonding Techniques |
8.2.4. | Tesla's Novel Bonding Technique |
8.2.5. | Direct Lead Bonding (Mitsubishi) |
8.2.6. | Technology Evolution Beyond Al Wire Bonding |
8.3. | Beyond Solder |
8.3.1. | Die and Substrate Attach are Common Failure Modes |
8.3.2. | The Choice of Solder Technology |
8.3.3. | Technology Evolution: Ag Sintering |
8.3.4. | Sintering: Die-to-substrate, Substrate-baseplate or Heat sink, Die Pad to Interconnect, etc.) |
8.3.5. | Evolution of Tesla's Power Electronics |
8.3.6. | Die Attach Technology Trends |
8.4. | Advanced Substrates |
8.4.1. | The Choice of Ceramic Substrate Technology |
8.4.2. | AlN: Overcoming its Mechanical Weakness |
8.4.3. | Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation |
8.4.4. | Direct Plated Copper (DPC): Pros and Cons |
8.4.5. | Double Bonded Copper (DBC): Pros and Cons |
8.4.6. | Active Metal Brazing (AMB): Pros and Cons |
8.4.7. | Thick Film Printing |
8.4.8. | Ceramics: CTE Mismatch |
8.5. | Eliminating Thermal Interface Materials |
8.5.1. | Why use TIM in Power Modules? |
8.5.2. | Why the Drive to Eliminate the TIM? |
8.5.3. | Thermal Grease: Other Shortcomings |
8.5.4. | Has TIM Been Eliminated in any EV Inverter Modules? |
8.6. | Power Electronics Packages: EV Use-cases |
8.6.1. | Toyota Prius 2004-2010 |
8.6.2. | 2008 Lexus |
8.6.3. | Toyota Prius 2010-2015 |
8.6.4. | Nissan Leaf 2012 |
8.6.5. | Renault Zoe 2013 (Continental) |
8.6.6. | Honda Accord 2014 |
8.6.7. | Honda Fit (by Mitsubishi) |
8.6.8. | Toyota Prius 2016 onwards |
8.6.9. | Chevrolet Volt 2016 (by Delphi) |
8.6.10. | Cadillac 2016 (by Hitachi) |
8.6.11. | Audi e-tron 2018 |
8.6.12. | BWM i3 (by Infineon) |
8.6.13. | Infineon's HybridPACK is used by Multiple Manufacturers |
8.6.14. | Infineon |
8.6.15. | Delphi, Cree, Oak Ridge National Laboratory and Volvo |
8.6.16. | Tesla's SiC Package |
8.6.17. | What Does This Mean for the MOSFET Package? |
8.6.18. | Tesla Model 3 2018 Liquid Cooling |
8.6.19. | Continental / Jaguar Land Rover Inverter |
8.6.20. | Jaguar I-PACE 2019 (Continental) Liquid Cooling |
8.6.21. | Nissan Leaf Custom Inverter Design |
8.6.22. | Nissan Leaf Liquid Cooling |
8.6.23. | Chevy Bolt Power Module (by LG Electronics / Infineon) |
8.6.24. | Hyundai E-GMP (Infineon) |
9. | SUMMARY OF FORECASTS |
9.1.1. | Heat Pumps for BEVs Forecast |
9.1.2. | Future Global Trends in OEM Cooling Methodologies |
9.1.3. | Adoption of Cooling Methodologies Forecast |
9.1.4. | Immersion Market Adoption Forecast |
9.1.5. | Immersion Fluid Volume Forecast |
9.1.6. | Battery and TIM Demand Trends |
9.1.7. | TIM for EV Battery Packs: Forecast by Vehicle Segment |
9.1.8. | TIM for EV Battery Packs: Forecast by TIM Type |
9.1.9. | Fire Protection Materials Forecast |
9.1.10. | Electric Motor Unit Forecast |
9.1.11. | Power Electronics Inverter Forecast |
10. | COMPANY PROFILES |