This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | Radars Are Now Common on Private Vehicles |
1.2. | Functions of Autonomous Driving at Different Levels |
1.3. | Future Vehicles and Radar |
1.4. | Adoption of ADAS |
1.5. | Radar Has a Key Place in Automotive Sensors |
1.6. | Front Radar Applications |
1.7. | The Role of Side Radars |
1.8. | Radar Performance Trends |
1.9. | Radar Trilemma |
1.10. | Radar Anatomy |
1.11. | Automotive Radars: Frequency Trends |
1.12. | Trends in Transceivers |
1.13. | Multiple Inputs, Multiple Outputs |
1.14. | Radar Board Trends |
1.15. | Radar Suppliers: Tier 1s and Start Ups |
1.16. | Leading players - tier 1 suppliers |
1.17. | Transceiver suppliers |
1.18. | Supply chain |
1.19. | Autonomy Automotive Leaders |
1.20. | Car Sales Forecast Broken Down by SAE Level |
1.21. | Radar Unit Sales by Application Forecast 2015-2042 |
1.22. | Radar Revenue by Region Forecast 2015-2042 |
1.23. | Radar Frequency Forecast 2015-2042 |
1.24. | Radar Semiconductor Forecast 2015-2042 |
1.25. | Radar Forecast by No. Virtual Channels 2015-2042 |
1.26. | Transceiver Demand for Radar Forecast 2015-2042 |
1.27. | Materials for Radar Forecast 2015-2042 |
1.28. | 17 IDTechEx Portal Profiles |
2. | INTRODUCTION |
2.1. | Overview |
2.1.1. | Radar |
2.1.2. | Typical Sensor Suite for Autonomous Cars |
2.1.3. | Sensors and their Purpose |
2.1.4. | Where does Radar Sit in the Sensor Trifactor |
2.1.5. | Radar - Radio Detection And Ranging |
2.1.6. | Functions of Autonomous Driving at Different Levels |
2.1.7. | Adoption of ADAS |
2.1.8. | SAE Levels of Automation in Cars |
2.1.9. | Why Automate Cars? |
2.1.10. | Privately Owned Autonomous Vehicles |
2.1.11. | Safety Mandated Features Driving Wider Radar Adoption. |
2.1.12. | The Impact of COVID-19 |
2.1.13. | Evolution of Sensor Suite from Level 1 to Level 4 |
2.1.14. | Quantity per car - Level 2 |
2.1.15. | Sensors per vehicle: level 3 and above |
2.1.16. | Front Radar Applications |
2.1.17. | Side Radars |
2.1.18. | No More Medium Range Radar (MRR) |
2.1.19. | Occupant Detection |
2.1.20. | Radar Anatomy |
2.1.21. | Radar Key Components |
2.1.22. | Primary Radar Components - The Antenna |
2.1.23. | Primary Radar Components - the RF Transceiver |
2.1.24. | Primary Radar Components - MCU |
2.1.25. | Primary Radar Components - Frequency |
2.2. | Regulatory & Legislative Progress Enabling Autonomy Adoption |
2.2.1. | EU Mandating Level 2 Autonomy from July 2022 |
2.2.2. | Privately Owned Autonomous Vehicles |
2.2.3. | Legislation and Autonomy |
2.2.4. | Level 3, Legislation, UK, Europe and Japan |
2.2.5. | Level 3, Legislation, UK, Europe and Japan |
2.2.6. | The European Commission's Roadmap to Autonomy |
2.2.7. | Level 3, Legislation, US |
2.2.8. | Level 3, Legislation, China |
2.2.9. | The Autonomous Legal Race |
2.3. | Example Sensor Suites |
2.3.1. | Emerging Level 2+ Terminology. |
2.3.2. | Sensor Suite Disclaimer |
2.4. | Privately Owned Vehicles |
2.4.1. | Audi A8 - Sensor suite |
2.4.2. | Honda Legend - Sensor suite |
2.4.3. | Tesla Autopilot - Sensor Suite |
2.4.4. | Tesla's Relationship with Sensors |
2.4.5. | Cadillac Escalade - Sensor suite |
2.4.6. | Mercedes S-class - Sensor Suite |
2.4.7. | BMW iX - Sensor Suite. |
2.4.8. | Volkswagen ID.Buzz - Sensor Suite |
2.4.9. | Lexus LS and Toyota Mirai |
2.4.10. | Nissan ProPilot 2.0 - Sensor Suite |
2.4.11. | PSA's self driving sensor suite |
2.4.12. | Arcfox Alpha S - Sensor suite |
2.4.13. | Xpeng P5 - Sensor suite |
2.4.14. | BYD Han - Sensor suite |
2.4.15. | Geely Xing Yue L - Sensor suite |
2.4.16. | Changan UNI-T - Sensor suite |
2.4.17. | Autonomy Automotive Leaders |
2.4.18. | Leaders |
2.4.19. | Sensor suit meta-data |
2.5. | Mobility as a Service (MaaS) |
2.5.1. | Waymo Sensor Suite |
2.5.2. | Cruise Sensor Suite. |
2.5.3. | AutoX Sensor Suite |
2.5.4. | Baidu/Apollo Sensor Suite |
2.5.5. | Pony.ai Sensor Suite |
2.5.6. | WeRide Sensor Suite |
2.5.7. | DiDi Sensor Suite |
2.5.8. | Aurora Sensor Suite |
2.5.9. | Zoox Sensor Suite |
2.5.10. | Motional & Aptiv Sensor Suite |
2.5.11. | MaaS Sensor Analysis |
2.5.12. | MaaS Sensor Suite Analysis. |
2.6. | ADAS Control Units |
2.6.1. | ADAS Control units, Distributed vs Centralised |
2.6.2. | Distributed Examples - Radar + ACC ECU |
2.6.3. | Distributed Example - Camera + Lane Departure ECU |
2.6.4. | Distributed ADAS from Tier 1 perspective |
2.6.5. | Quantity per car |
2.6.6. | Leading players |
2.6.7. | Connectivity info - radar |
2.6.8. | Connectivity info - ADAS controller |
3. | TIER 1 RADARS, START-UP RADARS & TIER 2 TRANSCEIVERS |
3.1. | Overview |
3.1.1. | Radar Key Performance Indicators |
3.1.2. | Texas Instruments - CMOS Transceiver with AOP |
3.1.3. | Texas Instruments Range of Integration |
3.1.4. | NXP - CMOS Transceiver |
3.1.5. | STMicroelectronics - SiGe Transceiver |
3.1.6. | Infineon - SiGe Transceiver, CMOS coming |
3.1.7. | Analogue Devices |
3.1.8. | Global Foundries - CMOS Partnership with Bosch |
3.1.9. | Continental ARS540 - Product |
3.1.10. | Continental |
3.1.11. | Bosch |
3.1.12. | Denso |
3.1.13. | Toyota moving away from Denso to ZF/Mobileye |
3.1.14. | Hella |
3.1.15. | ZF - Future |
3.1.16. | Magna fails to acquire Veoneer, But Supplies Next Gen. Radar to Fisker |
3.1.17. | Other Tier 1s |
3.1.18. | Tier 1 Leaders and Laggards |
3.1.19. | Mobileye |
3.1.20. | Oculii |
3.1.21. | Oculii and its Investors |
3.1.22. | Arbe |
3.1.23. | Arbe and its Investors |
3.1.24. | Metawave |
3.1.25. | Metawave and its Investors |
3.1.26. | Zadar |
3.1.27. | Smart Radar System (SRS) |
3.1.28. | Vayyar - Chip Manufacturer |
3.1.29. | Lunewave - Chip Manufacturer |
3.1.30. | Others |
3.1.31. | Key Player Revenues and Key Start Up Fundings |
3.1.32. | Supply Chain Changes |
3.1.33. | Financial Void and Massive Hurdles |
4. | BROAD TRENDS IN RADAR |
4.1. | Overview |
4.1.1. | IDTechEx Radar Trends Primary Research Method |
4.1.2. | Radar Trends: Volume and Footprint |
4.1.3. | Radar Trends: Packaging and Performance |
4.1.4. | Radar Trends: Increasing Range |
4.1.5. | Radar Trends: Field of View |
4.1.6. | Radar Trends: Angular Resolution (lower is better) |
4.1.7. | Radar Trends: Virtual Channel Count |
4.1.8. | Radar Trends: Virtual Channels and Resolution |
4.1.9. | Radars Limited Resolution |
4.1.10. | Two Approaches to Larger Channel Counts |
4.1.11. | Board Trends |
4.1.12. | Radar Trilemma |
4.2. | Radar in Localisation |
4.2.1. | Localisation |
4.2.2. | What is Localisation? |
4.2.3. | Localization: Absolute vs Relative |
4.2.4. | Radar Mapping |
4.2.5. | Radar Localisation: Navtech |
4.2.6. | Radar Localisation: GPR (previously WaveSense) |
4.3. | Waveforms and MIMO |
4.3.1. | Introduction to Waveforms |
4.3.2. | Typical performance using FMCW (single Tx/Rx) |
4.3.3. | Typical performance using FMCW (single Tx/Rx) |
4.3.4. | Multiple Inputs, Multiple Outputs |
4.3.5. | Scaling up of MIMO |
4.3.6. | Oculii |
4.3.7. | Orthogonal Frequency Division Multiplexing |
4.3.8. | Multiple Frequency Shift Key |
4.3.9. | Random/Noise/Digital Code Modulation |
4.3.10. | Unhder - Chip Developer |
4.4. | Frequency trends |
4.4.1. | Which Way is Frequency Going? |
4.4.2. | Applications of different frequencies. |
4.4.3. | Applications of different frequencies |
4.4.4. | Automotive Radars: Frequency Trends |
4.4.5. | Radar: Which Parameters Limit the Achievable KPIs |
4.4.6. | The significance of frequency and angular resolution |
4.4.7. | Impact of Frequency and Bandwidth on Angular Resolution |
4.4.8. | Packaging Benefits |
4.4.9. | Ranging |
4.4.10. | Surface Ice Detection |
4.4.11. | A Future Generation Radar? |
4.4.12. | Adoption Path of High Frequency Radars |
4.4.13. | Challenges and Hurdles for High Frequency Radar |
4.4.14. | Regulation |
4.5. | Transceivers, Semiconductors and Cascading |
4.5.1. | The trend towards smaller transistors. |
4.5.2. | Transceivers Semiconductor Trends: Power and Noise |
4.5.3. | Transceivers Semiconductor Trends: Virtual Channels |
4.5.4. | SiGe BiCMOS |
4.5.5. | CMOS |
4.5.6. | FD-SOI |
4.5.7. | The Future |
4.5.8. | Timeline |
4.5.9. | Radar Players and Technologies |
4.6. | Key properties of semiconductors utilized in RF front end (RFFE) in 5G applications |
4.6.1. | Key semiconductor properties |
4.7. | Choice of semiconductor for amplifiers in different types of base stations |
4.7.1. | Power vs frequency map of power amplifier technologies |
4.7.2. | The choice of the semiconductor technology for power amplifiers |
4.7.3. | GaN to win in sub-6 GHz 5G (for macro and microcell (> 5W)) |
4.8. | Company profiles of RF amplifiers suppliers |
4.8.1. | Skyworks Solutions |
4.8.2. | Ampleon |
4.8.3. | Analog Devices |
4.8.4. | Cree-Wolfspeed |
4.8.5. | Wolfspeed GaN-on-SiC adoption |
4.8.6. | Infineon |
4.8.7. | MACOM |
4.8.8. | Mitsubishi Electric |
4.8.9. | Mitsubishi Electric |
4.8.10. | Northrop Grumman |
4.8.11. | NXP Semiconductor |
4.8.12. | Qorvo |
4.8.13. | Qorvo sub-6 GHz products |
4.8.14. | Qorvo mmWave products |
4.8.15. | RFHIC |
4.8.16. | Sumitomo Electric |
4.9. | Radomes, Antennas, Materials and Board Trends. |
4.9.1. | Importance of the Radome |
4.9.2. | Radome and range |
4.9.3. | Ideal Radome Properties |
4.9.4. | Radome Shape Considerations |
4.9.5. | Preperm |
4.9.6. | DuPont - Crastin & Laird (a DuPont company) |
4.9.7. | Radar Aesthetics, Form and Function |
4.9.8. | Other material considerations |
4.9.9. | Key Material Suppliers |
4.9.10. | Dielectric constant: benchmarking different substrate technologies |
4.9.11. | Dielectric constant: stability vs frequency for different organic substrates (PI, PTFE, LCP, thermosets, etc.) |
4.9.12. | Dielectric constant: stability vs frequency for different inorganic substrates (LTCC, glass) |
4.9.13. | Loss tangent: benchmarking different substrate technologies |
4.9.14. | Loss tangent: stability vs frequency for different substrates |
4.9.15. | Dielectric constant and loss tangent stability: behaviour at mmwave frequencies and higher |
4.9.16. | Temperature stability of dielectric constant: benchmarking organic substrates |
4.9.17. | Moisture uptake: benchmarking different substrate technologies |
4.9.18. | Antenna Design |
4.9.19. | Patch Array Design |
4.9.20. | Patch Array in Practice |
4.9.21. | Phased Array Antennas |
4.9.22. | Metawave - analogue beamforming/beam steering |
4.9.23. | Echodyne |
4.9.24. | Lunewave - 3D printed antenna |
4.9.25. | Antenna Miniaturisation |
4.9.26. | Board Trends |
5. | RADAR MARKET, SUPPLIERS, SHARES, STRUCTURE, CHANGES |
5.1. | Availability of ADAS |
5.2. | Adoption of ADAS Driving Radar Growth |
5.3. | Leading players - tier 1 suppliers |
5.4. | Side and Front Radar Shares |
5.5. | Leading Tier 1s by Revenue |
5.6. | Geographical Market Share |
5.7. | Transceiver suppliers |
5.8. | Supplier relations (transceivers) |
5.9. | Mixed supply chain |
5.10. | Consolidation of Tier 2 products |
5.11. | Emerging players/Start ups |
6. | FORECASTS |
6.1. | MaaS market entry by region |
6.2. | Method: Growth seed and addressable market |
6.3. | Global MaaS adoption forecast 2022-2042 |
6.4. | Car Sales Forecast 2015-2042, Peak Car |
6.5. | Car Sales by Region Forecast 2015-2042 |
6.6. | Forecasting adoption of level 3 and level 4 technology |
6.7. | Car Sales Forecast by SAE Level, 2015-2042 |
6.8. | Car Sales Forecast by SAE Level, 2022-2042 |
6.9. | Forecasting Method and Assumptions |
6.10. | Radar Unit Sales by Application Forecast 2015-2042 |
6.11. | Radar Revenue by Application Forecast 2017-2042 |
6.12. | Radar Revenue by Region Forecast 2015-2042 |
6.13. | Radar Frequency Forecast 2015-2042 |
6.14. | Radar Semiconductor Forecast 2015-2042 |
6.15. | Transceiver Virtual Channel Forecast 2015-2042 |
6.16. | Radar Forecast by No. Virtual Channels 2015-2042 |
6.17. | Transceiver Demand for Radar Forecast Method |
6.18. | Transceiver Demand for Radar Forecast 2015-2042 |
6.19. | Materials for Radar Forecast Method |
6.20. | Materials for Radar Forecast 2015-2042 |
Slides | 296 |
---|---|
Forecasts to | 2042 |
ISBN | 9781913899820 |