This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | Executive introduction: Electronic skin patches |
1.2. | Application overview |
1.3. | Skin patches competing with established products |
1.4. | New market creation around skin patches |
1.5. | Applications, market sizes and outlook |
1.6. | Wearable, ambulatory cardiac monitoring: Comparison of over 35 players |
1.7. | Key conclusions: cardiac monitoring skin patches |
1.8. | Cardiac monitoring skin patches: Historic data: 2010-2018 |
1.9. | Cardiac monitoring skin patches: Market forecasts |
1.10. | Diabetes management: Positioning of 25 players |
1.11. | A shifting focus in diabetes management Historic data: 2010-2018 |
1.12. | The growth of CGM accelerates |
1.13. | Diabetes management: full historic data and forecast |
1.14. | Key conclusions: Iontophoresis |
1.15. | Skin patch temperature sensing: Use cases across 12 case studies |
1.16. | Key conclusions: Temperature sensing skin patches |
1.17. | Key conclusions: Motion sensing |
1.18. | Key conclusions: Sweat sensing |
1.19. | List of players from case studies |
2. | INTRODUCTION |
2.1. | The case for skin patches: Augmenting the human body |
2.2. | The case for skin patches: Improving device form factor |
2.3. | Definitions and exclusions |
2.4. | History of skin patches |
2.5. | Applications, market sizes and outlook |
2.6. | Reimbursement drives commercial business models |
2.7. | Commercialising skin patches: Survey of over 100 different examples |
2.8. | List of players from case studies |
2.9. | Commercial progress by form factor |
2.10. | Commercial progress vs form factor |
2.11. | Commercial progress by application focus |
2.12. | Commercial progress vs application focus |
2.13. | Patents: Total active patents by assignee |
2.14. | Patents: Active and strong patents by assignee |
2.15. | Top 30 skin patch patent assignees, by country & region |
2.16. | Patents: Assignees with activity in the last 2 years |
2.17. | Skin patch commercialisation efforts, by geography |
2.18. | Context: Wearables hype |
2.19. | Glossary |
3. | ELECTRONIC SKIN PATCH APPLICATIONS |
3.1. | Application overview |
3.1.1. | Application overview |
3.1.2. | Skin patches competing with established products |
3.1.3. | New market creation around skin patches |
3.1.4. | Section contents |
3.2. | Cardiovascular monitoring skin patches |
3.2.1. | Introduction - Cardiovascular monitoring via wearable devices |
3.2.2. | Introduction - Measuring biopotential |
3.2.3. | Introduction - Electrocardiography (ECG, or EKG) |
3.2.4. | Technology overview - the circuitry for measuring biopotential |
3.2.5. | Technology overview - electrode properties |
3.2.6. | Progress towards ambulatory cardiac monitoring |
3.2.7. | Differentiation between ambulatory cardiac monitors |
3.2.8. | Wearable vs implantable monitoring |
3.2.9. | Reimbursement codes for wearable cardiac monitors |
3.2.10. | Scenario: Reduction in reimbursement for MCT in the US market |
3.2.11. | Reimbursement codes for implantable cardiac monitors |
3.2.12. | Example: Medtronic (SEEQ & LINQ) |
3.2.13. | Wearable, ambulatory cardiac monitoring: Comparison of over 35 players |
3.2.14. | Wearable, ambulatory cardiac monitoring: Comparison of over 35 players |
3.2.15. | Case studies: key players |
3.2.16. | BioTelemetry, Inc. |
3.2.17. | BioTelemetry: Timeline |
3.2.18. | iRhythm: ZIO |
3.2.19. | Medtronic: SEEQ MCT |
3.2.20. | VivaLNK |
3.2.21. | Cardiomo |
3.2.22. | Holst Center: Skin patches |
3.2.23. | Byteflies & Quad Industries |
3.2.24. | Vivomi |
3.2.25. | LumiraDx: Ampstrip |
3.2.26. | QT Medical |
3.2.27. | Competition with other form factors |
3.2.28. | Other form factors for ambulatory cardiac monitoring |
3.2.29. | Comparison: Chest straps |
3.2.30. | Comparison: Apparel |
3.2.31. | Comparison: Apparel (examples) |
3.2.32. | Comparison: Portable devices |
3.2.33. | Comparison: Smartwatch optical HRM |
3.2.34. | Market data and forecasts |
3.2.35. | Market overview and forecasts |
3.2.36. | Cardiac monitoring skin patches: Historic data: 2010-2018 |
3.2.37. | Cardiac monitoring skin patches: Market forecasts |
3.2.38. | Key conclusions: cardiac monitoring skin patches |
3.3. | Wireless inpatient monitoring via skin patches |
3.3.1. | Inpatient monitoring: The case for removing the wires |
3.3.2. | Players and approaches |
3.3.3. | Sensium (Surgical Company Group) |
3.3.4. | VitalConect |
3.3.5. | Isansys Lifecare |
3.3.6. | Leaf Healthcare |
3.3.7. | Conclusions & related areas |
3.4. | Diabetes management via skin patches |
3.4.1. | Background: Diabetes in numbers |
3.4.2. | Background: Diabetes on the rise |
3.4.3. | Background: The cost of diabetes |
3.4.4. | Diabetes management process |
3.4.5. | Diabetes management device roadmap: Sensors |
3.4.6. | Non-invasive glucose monitoring? |
3.4.7. | Opinions against non-invasive glucose monitoring |
3.4.8. | The case for CGM |
3.4.9. | Skin patches for diabetes management |
3.4.10. | Competition from the reimbursement scenario |
3.4.11. | Diabetes management: Positioning of 25 players |
3.4.12. | Key players in continuous glucose monitoring (CGM) |
3.4.13. | CGM: Overview of key players |
3.4.14. | Abbott Laboratories |
3.4.15. | Abbott: FreeStyle Libre |
3.4.16. | Abbott: SMBG vs CGM comparison |
3.4.17. | Dexcom |
3.4.18. | Medtronic |
3.4.19. | Medtronic: Patents in CGM |
3.4.20. | Roche |
3.4.21. | Roche: Patents in CGM |
3.4.22. | Senseonics |
3.4.23. | Other players |
3.4.24. | Sano |
3.4.25. | PKVitality |
3.4.26. | Verily / Google: Contact lenses |
3.4.27. | DiabeLoop |
3.4.28. | Academic examples |
3.4.29. | Binghampton University |
3.4.30. | University of Bath |
3.4.31. | Insulin delivery |
3.4.32. | Diabetes management device roadmap: Insulin delivery |
3.4.33. | Insulin pumps: Introduction |
3.4.34. | Patent activity in insulin pumps is prominent |
3.4.35. | Insulin pumps currently available |
3.4.36. | Insulin pump breakdown |
3.4.37. | Insulin patch pumps |
3.4.38. | Example: Progress from Medtronic |
3.4.39. | Outlook for insulin pumps |
3.4.40. | Linking insulin pumps and CGM: Towards an artificial pancreas |
3.4.41. | Today: Hybrid closed loop systems |
3.4.42. | Example: Progress from Medtronic |
3.4.43. | The objective: Closing the feedback loop |
3.4.44. | Examples and partnerships |
3.4.45. | Market data: Historic & forecasts |
3.4.46. | A shifting focus in diabetes management Historic data: 2010-2018 |
3.4.47. | Test strip business in decline |
3.4.48. | The growth of CGM accelerates |
3.4.49. | Diabetes management: full historic data and forecast |
3.5. | Iontophoresis skin patches: Cosmetics and drug delivery |
3.5.1. | Introduction - Iontophoresis |
3.5.2. | Cosmetics |
3.5.3. | Cosmetic skin patches |
3.5.4. | Estée Lauder |
3.5.5. | BioBliss™, Iontera, Patchology |
3.5.6. | Feeligreen (Feeligold) |
3.5.7. | Drug delivery |
3.5.8. | Iontophoresis for drug delivery |
3.5.9. | Drugs studied for iontophoretic delivery |
3.5.10. | Feeligreen (Feelicare) |
3.5.11. | Seoul National University: Parkinson's medication via skin patches |
3.5.12. | Reverse iontophoresis |
3.5.13. | Reverse Iontophoresis |
3.5.14. | Example: GlucoWatch |
3.5.15. | Nemaura Medical: sugarBEAT |
3.5.16. | Key conclusions: Iontophoresis |
3.6. | Temperature sensing skin patches |
3.6.1. | Introduction - Body Temperature |
3.6.2. | Temperature sensing technology options |
3.6.3. | Approaches and standards for medical temperature sensing |
3.6.4. | Skin patches for temperature sensing |
3.6.5. | Skin patch temperature sensing: Use cases across 12 case studies |
3.6.6. | VivaLNK |
3.6.7. | VivaLNK & Reckitt Benckiser |
3.6.8. | Blue Spark |
3.6.9. | Life Science Technology |
3.6.10. | Isansys Lifecare |
3.6.11. | Gaugewear |
3.6.12. | greenTEG |
3.6.13. | PST Sensors |
3.6.14. | Raiing Medical |
3.6.15. | Bonbouton |
3.6.16. | CSEM |
3.6.17. | Covestro |
3.6.18. | Alternative options: Tympanic temperature sensing |
3.6.19. | Key conclusions: Temperature sensing skin patches |
3.7. | Sweat sensing: Sweat rate and biomarkers |
3.7.1. | Introduction - Sweat sensing |
3.7.2. | Measuring sweat rate |
3.7.3. | Technology overview - measuring bioimpedance |
3.7.4. | Technology overview - Galvanic skin response (GSR) |
3.7.5. | Technology overview - humidity sensors for sweat |
3.7.6. | GE Global Research |
3.7.7. | Sensing biomarkers in sweat |
3.7.8. | Technology overview - chemical sensing in sweat |
3.7.9. | Sweat vs other sources of analytes |
3.7.10. | Analytes in sweat |
3.7.11. | Technology overview: Chemical sensing |
3.7.12. | Biolinq |
3.7.13. | Kenzen |
3.7.14. | Milo Sensors |
3.7.15. | Eccrine Systems |
3.7.16. | PARC / UCSD |
3.7.17. | Stanford and UC Berkeley |
3.7.18. | Xsensio |
3.7.19. | Epicore Biosystems |
3.7.20. | Key conclusions: Sweat sensing |
3.8. | Motion sensing with skin patches |
3.8.1. | Introduction - Monitoring motion via skin patches |
3.8.2. | Different modes for sensing motion |
3.8.3. | Measuring motion with inertial measurement units |
3.8.4. | Introduction - Inertial measurement units |
3.8.5. | Measuring motion with IMUs: Examples |
3.8.6. | Value chain and examples of players |
3.8.7. | IMUs in skin patches |
3.8.8. | Suunto: Movesense |
3.8.9. | Measuring motion with conformal sensors |
3.8.10. | Introduction - alternatives for measuring motion |
3.8.11. | Technology overview - Resistive/piezoresistive sensing |
3.8.12. | Players and industry dynamic |
3.8.13. | Peratech |
3.8.14. | Quantum tunnelling composite: QTC® |
3.8.15. | QTC® vs. FSR™ vs. piezoresistor? |
3.8.16. | Bebop Sensors |
3.8.17. | Bainisha |
3.8.18. | Technology overview - Capacitive sensing |
3.8.19. | Parker Hannifin |
3.8.20. | Stretchsense |
3.8.21. | LEAP Technology |
3.8.22. | Technology overview - Piezoelectric sensing |
3.8.23. | Application examples |
3.8.24. | Applications for skin patch motion sensors |
3.8.25. | Case study - Concussion detection |
3.8.26. | X2 Biosystems |
3.8.27. | US Military head trauma patch / PARC |
3.8.28. | Triax |
3.8.29. | Key conclusions: Motion sensing |
3.9. | Wound monitoring and treatment with skin patches |
3.9.1. | Wound Monitoring |
3.9.2. | Wound Monitoring: KAUST |
3.9.3. | Wound Monitoring: Purdue University |
3.9.4. | Wound Monitoring: Tufts University |
3.9.5. | Wound Monitoring: Tyndall National Institute |
3.9.6. | Wound Monitoring: UC Berkeley |
3.9.7. | Wound Monitoring: UCSD |
3.9.8. | Wound Monitoring: VTT |
3.9.9. | Wound Treatment |
3.10. | Others applications of skin patches |
3.10.1. | List of examples |
3.10.2. | General technology platforms |
3.10.3. | Qualcomm Life |
3.10.4. | Qualcomm Life / Capsule Technologies |
3.10.5. | LifeSignals |
3.10.6. | Samsung |
3.10.7. | MC10 |
3.10.8. | DevInnova / Scaleo Medical |
3.10.9. | Other healthcare & medical applications |
3.10.10. | Acoustic respiration rate |
3.10.11. | Proteus Digital Health |
3.10.12. | Novioscan: Wearable Ultrasound |
3.10.13. | GraftWorx |
3.10.14. | Supporting vaccination with microneedle patches |
3.10.15. | Avanix |
3.10.16. | Avanix - business model and target milestones |
3.10.17. | Other fitness & wellness applications |
3.10.18. | UV protection |
3.10.19. | MC10 & L'Oréal: Wisp |
3.10.20. | Hivox Biotek |
3.10.21. | Lief Therapeutics: Stress Management |
3.10.22. | Others |
3.10.23. | EOG - eye tracking with skin patches |
4. | SKIN PATCH TECHNOLOGY DEVELOPMENT |
4.1. | Introduction: Skin patch technology development |
4.2. | Flexible electronics |
4.3. | Flexible substrates |
4.4. | Plastic substrates |
4.5. | Key parameters for plastic substrates |
4.6. | Flexible glass |
4.7. | Stretchable or extremely flexible circuit boards |
4.8. | Stretchable or extremely flexible circuit boards (Reebok) |
4.9. | Examples of thin and flexible PCBs in wearable and display applications |
4.10. | Examples of thin and flexible PCBs in various applications |
4.11. | Stretchable meandering interconnects |
4.12. | Stretchable printed circuits boards |
4.13. | Examples of fully circuits on stretchable PCBs |
4.14. | Conductive inks |
4.15. | Hypoallergenic conductive inks for skin patches |
4.16. | Examples of circuits printed with conductive inks |
4.17. | Stretchable actually-printed electronic circuits/systems |
4.18. | Stretchable inks: general observations |
4.19. | Performance of stretchable conductive inks |
4.20. | Evolution and improvements in performance of stretchable conductive inks |
4.21. | Stretchable ink: suppliers increase |
4.22. | Electronic skin microsystems for health monitoring |
5. | MARKET FORECASTS |
5.1. | Forecast details and assumptions |
5.2. | Historic data: All electronic skin patches, 2010-2018 |
5.3. | Market forecast: All electronic skin patches, 2019-2029 |
5.4. | Historic data: Cardiovascular monitoring skin patches, 2010-2018 |
5.5. | Market forecast: Cardiovascular monitoring skin patches, 2019-2029 |
5.6. | Historic data: Skin patches for diabetes management, 2010-2018 |
5.7. | Market forecast: Skin patches for diabetes management, 2019-2029 |
5.8. | Historic data: Skin patches for patient monitoring, 2010-2018 |
5.9. | Market forecast: Skin patches for patient monitoring, 2019-2029 |
5.10. | Historic data: Temperature monitoring skin patches, 2010-2018 |
5.11. | Market forecast: Temperature monitoring skin patches, 2019-2029 |
5.12. | Historic data: Skin patches for iontophoresis, 2010-2018 |
5.13. | Market forecast: Skin patches for iontophoresis, 2019-2029 |
5.14. | Historic data: Other types of electronic skin patch, 2010-2018 |
5.15. | Market forecast: Other types of electronic skin patch, 2019-2029 |
6. | KEY PLAYERS |
6.1. | List of 101 electronic skin patch case studies |
Slides | 352 |
---|---|
Forecasts to | 2029 |