This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

生物塑料 2020-2025:

一种生物基聚合物技术及其市场前景

显示全部 说明 内容、图表列表 常见问题解答 价格 Related Content
生物塑料是从生物原料中提取的聚合物,是解决塑料导致的环境问题的一种潜在方法——生物塑料由可再生资源制成,通常可以进行生物降解。尽管如此,由于化石塑料的价格往往更加便宜,生物塑料过去一直很难与化石塑料竞争。但是,情况正在发生变化。这份新报告探讨了使生物塑料成为未来的一种可行方案所涉及的技术,提供了对市场的洞察,并概述了这种不断发展的技术的未来前景。
Despite growing awareness of the environmental problems caused by plastics, global plastics production is still increasing, with the world forecast to produce over 600 million tonnes of plastic by 2030. Bioplastics, a class of polymers manufactured from biomass, could be a solution. Many are biodegradable and, because they are made from renewable resources, they could help ease the world's dependency on fossil-based resources. Despite these advantages, bioplastics have not yet seen widespread application due to barriers such as cost and scale. The fall in oil prices in 2014 exacerbated the situation, with bioplastics companies struggling to compete with extremely cheap petrochemically derived plastics.
 
However, the situation is beginning to change. Thanks in part to innovations in synthetic biology, these polymers are becoming more affordable to manufacture. Increasing customer awareness of the climate impact of petrochemically derived polymers as well as a global shift in demand away from plastics with a lifespan of several hundreds of years has resulted in renewed focus on this previously inaccessible area.
 
 
There is a large number of bioplastics, ranging from direct substitutes for existing plastics to novel polymers made through innovative methods. Note – not all bioplastics are biodegradable. Source: European Bioplastics
 
Technologies, applications and case studies
There are currently many different types of bioplastics. These range from direct substitutes for non-biodegradable fossil-based plastics, such as Coca-Cola's PlantBottle produced from partially biosourced polyethylene terephthalate (PET), to completely biodegradable plastics made through innovative production methods, such as polyhydroxyalkanoates (PHAs) produced through bacterial fermentation. This report takes an in-depth look at the diverse array of bioplastics and biobased polymers, from established to nascent, providing detailed case studies of companies developing cutting edge technologies for producing bioplastics. An overview of the latest tools utilised in the field of synthetic biology is provided, with focus on CRISPR, protein and organism engineering and commercial scale fermentation. Furthermore, this report cuts through the marketing hype to offer a detailed insight into some of the foremost biobased polymer companies leading global innovation and bringing potentially disruptive products to market.
 
Market outlook
This report provides an overview of the technological advancements in biobased polymers to date, a comprehensive insight into the drivers and restraints affecting synthesis and production at scale for all key application areas discussed and provides case studies and SWOT analyses for the most prolific disrupters developing biobased polymers.
 
Key questions answered in this report
• What are bioplastics and how can they be used?
• Which bioplastics are gaining the most interest throughout the industry?
• Who are the key players developing bioplastics?
• What are the key drivers and restraints of market growth?
• How are traditional plastics being disrupted by bioplastics?
• How will bioplastic production capacity increase from 2020 to 2025?
从 IDTechEx 访问分析师
所有报告购买订单均包括与一名专家分析师进行 30 分钟的电话交谈,专家分析师将帮助您将报告中的重要发现与您正在处理的业务问题联系起来。这需要在购买报告后的三个月内使用。
更多信息
如果您对这一报告有任何疑问,请随时联系我们的报告团队 research@IDTechEx.com 或致电我们的销售经理:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
ASIA (Korea): +82 10 3896 6219
EUROPE (UK) +44 1223 812300
1.EXECUTIVE SUMMARY
1.1.Global plastics production to pass 600 million tonnes by 2030
1.2.Awareness around single use plastic pollution
1.3.What are bioplastics?
1.4.Navigating biobased polymers from monosaccharides
1.5.Navigating biobased polymers from vegetable oils
1.6.Biobased value add: The Green Premium...
1.7....versus the price of Brent Crude
1.8.The price of oil affects the size of the Green Premium
1.9.The four drivers for substitution
1.10.Drivers and restraints of market growth
1.11.A rapidly growing but uncertain technology
1.12.Global production capacities of bioplastics (2019)
1.13.Global production capacities of bioplastics by market segment (2019)
1.14.Global production capacities of bioplastics by region (2019)
1.15.Bioplastics: forecast production capacity by material
1.16.Switching to biobased plastics: why so slow?
2.INTRODUCTION
2.1.Scope of the report
2.2.List of acronyms
2.3.Key terms and definitions
2.4.What are bioplastics?
2.5.The three main families of bioplastics
2.6.What does "biodegradable" mean?
2.7.Recycling polymers
2.8.The range of available biobased monomers
2.9.Navigating biobased polymers from monosaccharides
2.10.Navigating biobased polymers from vegetable oils
2.11.Social, economic and environmental megatrends
2.12.A rapidly growing but uncertain technology
2.13.Global supply of plastics has grown exponentially
2.14.Polymer types: thermoplastics, thermosets and elastomers
2.15.Global production capacities of bioplastics (2019)
2.16.Environmental costs: the rising tide of plastic pollution
2.17.Biobased value add: The Green Premium...
2.18....versus the price of Brent Crude
2.19.The four drivers for substitution
3.SYNTHETIC BIOBASED POLYMERS
3.1.Polyesters: polylactic acid
3.1.1.What is polylactic acid (PLA)?
3.1.2.Production of polylactic acid
3.1.3.Lactic acid: bacterial fermentation or chemical synthesis?
3.1.4.Optimal lactic acid bacteria strains for fermentation
3.1.5.Engineering yeast strains for lactic acid fermentation
3.1.6.Fermentation, recovery and purification
3.1.7.Polymerisation of lactide and microstructures of PLA
3.1.8.Biodegradation of polylactic acid
3.1.9.Biodegradation: hydrolysis of PLA
3.1.10.Suppliers of lactide and polylactic acid
3.1.11.Current and future applications of polylactic acid
3.1.12.Polylactic acid: a SWOT analysis
3.1.13.Opportunities in the lifecycle of PLA
3.2.Polyesters: other polyesters
3.2.1.Introduction to polyesters from diacids and diols
3.2.2.The range of available biobased polyesters
3.2.3.Biobased polyester suppliers
3.2.4.Polyethylene terephthalate (PET)
3.2.5.Biobased MEG and PET: monomer production
3.2.6.Biobased MEG and PET: polymer applications
3.2.7.Biobased PDO and PTT: monomer production
3.2.8.Biobased PDO and PTT: polymer applications
3.2.9.Biobased BDO and PBT: monomer production
3.2.10.Biobased BDO and PBT: polymer applications
3.2.11.Biobased terephthalic acid
3.2.12.Biobased succinic acid and PBS: monomer production
3.2.13.Biobased succinic acid and PBS: polymer applications
3.2.14.Polyethylene furanoate
3.2.15.Biobased furfural compounds: 5-HMF
3.2.16.Biobased FDCA and PEF: monomer production
3.2.17.Biobased FDCA and PEF: polymer applications
3.3.Polyamides
3.3.1.Introduction to biobased polyamides
3.3.2.Range of available biobased monomers and polyamides
3.3.3.Biobased monomer and polyamide suppliers
3.3.4.C6: adipic acid, hexamethylenediamine and caprolactam
3.3.5.C10: sebacic acid and decamethylenediamine
3.3.6.C11: 11-aminoundecanoic acid
3.3.7.C12: Dodecanedioic acid
3.3.8.Polyamide properties, applications and opportunities
3.4.Other polymers
3.4.1.Other biobased polymers
3.4.2.Polyester polyols, polyurethanes and polyisocyanates
3.4.3.Cargill: vegetable oil derived polyols
3.4.4.Covestro and Reverdia: Impranil eco Succinic acid based polyester polyols
3.4.5.BASF: Sovermol 830 Castor oil derived polyether-ester polyol
3.4.6.Covestro: PDI and Desmodur eco N 7300 polyisocyanurate
3.4.7.Biobased polyolefins
3.4.8.Biobased polyolefins: challenging but in demand
3.4.9.Braskem: I'm green Polyethylene
3.4.10.Biobased isosorbide as a comonomer
3.4.11.Roquette: POLYSORB isosorbide
3.4.12.Mitsubishi Chemical Corporation: Durabio
4.NATURALLY OCCURRING BIOPLASTICS AND BIOBASED POLYMERS
4.1.Polyesters: poly(hydroxyalkanoates)
4.1.1.Introduction to poly(hydroxyalkanoates)
4.1.2.Suppliers of PHAs
4.1.3.PHAs: microstructures and properties
4.1.4.Properties of common PHAs
4.1.5.Biosynthetic pathways to PHAs
4.1.6.Fermentation, recovery and purification
4.1.7.PHAs: a SWOT analysis
4.1.8.Applications of PHAs
4.1.9.Opportunities in PHAs
4.1.10.Applications of PHAs: present and future
4.1.11.Risks in PHAs
4.1.12.PHAs are only made in small quantities
4.1.13.PHA production facilities
4.1.14.Newlight Technologies
4.1.15.Danimer Scientific
4.2.Polysaccharides
4.2.1.Cellulose
4.2.2.Nanocellulose
4.2.3.Forms of nanocellulose
4.2.4.Nanocellulose up close
4.2.5.Applications of nanocellulose
4.2.6.CelluForce
4.2.7.The Exilva project
4.2.8.Manufacturing thermoplastic starch
4.2.9.Plantic
4.2.10.Seaweed extracts as a packaging material
4.2.11.Loliware
4.2.12.Ooho! by Notpla
4.2.13.Evoware
4.3.Proteins: synthetic spider silk
4.3.1.Spider Silk Without Spiders
4.3.2.Manufacturing synthetic spider silk
4.3.3.Applications for Spider Silk
4.3.4.Bolt Threads
4.3.5.Spiber
4.3.6.Kraig Biocraft Laboratories
5.DESIGNING AND ENGINEERING BIOLOGICAL SYSTEMS
5.1.Designing and engineering biological systems
5.2.Manipulating the central dogma
5.3.The vast scope of synthetic biology
5.4.Cell factories for biomanufacturing: a range of organisms
5.5.The techniques and tools of synthetic biology
5.6.DNA synthesis
5.7.Gene editing
5.8.What is CRISPR?
5.9.Strain Construction and optimisation
5.10.Framework for developing industrial microbial strains
5.11.The Problem with Scale
6.MARKET TRENDS AND ANALYSIS
6.1.Global plastics production to pass 600 million tonnes by 2030
6.2.Awareness around single use plastic pollution
6.3.Are biodegradable plastics the solution?
6.4.Reduced carbon dioxide emissions directives
6.5.Feedstock competition: food or fuel (or plastics)?
6.6.The price of oil affects the size of the Green Premium
6.7.Will consumers pay more for green products?
6.8.Global production capacities of bioplastics (2019)
6.9.Global production capacities of bioplastics by market segment (2019)
6.10.Global production capacities of bioplastics by region (2019)
6.11.Bioplastics and automotive applications
6.12.Bioplastics: processability
6.13.Bioplastics: application in packaging
6.14.Bioplastics: applicability for flexible packaging
6.15.Bioplastics: applicability for rigid packaging
6.16.Bioplastics: forecast production capacity by material
6.17.Bioplastics: forecast production by polymer type
6.18.Bioplastics: forecast by region
6.19.Drivers and restraints of market growth
6.20.Switching to biobased plastics: why so slow?
 

About IDTechEx reports

What are the qualifications of the people conducting IDTechEx research?

Content produced by IDTechEx is researched and written by our technical analysts, each with a PhD or master's degree in their specialist field, and all of whom are employees. All our analysts are well-connected in their fields, intensively covering their sectors, revealing hard-to-find information you can trust.

How does IDTechEx gather data for its reports?

By directly interviewing and profiling companies across the supply chain. IDTechEx analysts interview companies by engaging directly with senior management and technology development executives across the supply chain, leading to revealing insights that may otherwise be inaccessible.
 
Further, as a global team, we travel extensively to industry events and companies to conduct in-depth, face-to-face interviews. We also engage with industry associations and follow public company filings as secondary sources. We conduct patent analysis and track regulatory changes and incentives. We consistently build on our decades-long research of emerging technologies.
 
We assess emerging technologies against existing solutions, evaluate market demand and provide data-driven forecasts based on our models. This provides a clear, unbiased outlook on the future of each technology or industry that we cover.

What is your forecast methodology?

We take into account the following information and data points where relevant to create our forecasts:
  • Historic data, based on our own databases of products, companies' sales data, information from associations, company reports and validation of our prior market figures with companies in the industry.
  • Current and announced manufacturing capacities
  • Company production targets
  • Direct input from companies as we interview them as to their growth expectations, moderated by our analysts
  • Planned or active government incentives and regulations
  • Assessment of the capabilities and price of the technology based on our benchmarking over the forecast period, versus that of competitive solutions
  • Teardown data (e.g. to assess volume of materials used)
  • From a top-down view: the total addressable market
  • Forecasts can be based on an s-curve methodology where appropriate, taking into account the above factors
  • Key assumptions and discussion of what can impact the forecast are covered in the report.

How can I be confident about the quality of work in IDTechEx reports?

Based on our technical analysts and their research methodology, for over 25 years our work has regularly received superb feedback from our global clients. Our research business has grown year-on-year.
 
Recent customer feedback includes:
"It's my first go-to platform"
- Dr. Didi Xu, Head of Foresight - Future Technologies, Freudenberg Technology Innovation
 
"Their expertise allows us to make data-driven, strategic decisions and ensures we remain aligned with the latest trends and opportunities in the market."
- Ralf Hug, Global Head of Product Management & Marketing, Marquardt

What differentiates IDTechEx reports?

Our team of in-house technical analysts immerse themselves in industries over many years, building deep expertise and engaging directly with key industry players to uncover hard-to-find insights. We appraise technologies in the landscape of competitive solutions and then assess their market demand based on voice-of-the-customer feedback, all from an impartial point of view. This approach delivers exceptional value to our customers—providing high-quality independent content while saving customers time, resources, and money.

Why should we pick IDTechEx research over AI research?

A crucial value of IDTechEx research is that it provides information, assessments and forecasts based on interviews with key people in the industry, assessed by technical experts. AI is trained only on content publicly available on the web, which may not be reliable, in depth, nor contain the latest insights based on the experience of those actively involved in a technology or industry, despite the confident prose.

How can I justify the ROI of this report?

Consider the cost of the IDTechEx report versus the time and resources required to gather the same quality of insights yourself. IDTechEx analysts have built up an extensive contact network over many years; we invest in attending key events and interviewing companies around the world; and our analysts are trained in appraising technologies and markets.
 
Each report provides an independent, expert-led technical and market appraisal, giving you access to actionable information immediately, rather than you having to spend months or years on your own market research.

Can I speak to analysts about the report content?

All report purchases include up to 30 minutes of telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

What is the difference between a report and subscription?

A subscription from IDTechEx can include more reports, access to an online information platform with continuously updated information from our analysts, and access to analysts directly.

Before purchasing, I have some questions about the report, can I speak to someone?

Please email research@idtechex.com stating your location and we will quickly respond.

About IDTechEx

Who are IDTechEx's customers?

IDTechEx has served over 35,000 customers globally. These range from large corporations to ambitious start-ups, and from Governments to research centers. Our customers use our work to make informed decisions and save time and resources.

Where is IDTechEx established?

IDTechEx was established in 1999, and is headquartered in Cambridge, UK. Since then, the company has significantly expanded and operates globally, having served customers in over 80 countries. Subsidiary companies are based in the USA, Germany and Japan.

Questions about purchasing a report

How do I pay?

In most locations reports can be purchased by credit card, or else by direct bank payment.

How and when do I receive access to IDTechEx reports?

When paying successfully by credit card, reports can be accessed immediately. For new customers, when paying by bank transfer, reports will usually be released when the payment is received. Report access will be notified by email.

How do I assign additional users to the report?

Users can be assigned in the report ordering process, or at a later time by email.

Can I speak to someone about purchasing a report?

Please email research@idtechex.com stating your location and we will quickly respond.
 
生物塑料最终将成为化石塑料的一种可行替代品。

报告统计信息

幻灯片 168
预测 2025
 

Customer Testimonial

quote graphic
"IDTechEx consistently provides well-structured and comprehensive research reports, offering a clear and holistic view of key trends... It's my first go-to platform for quickly exploring new topics and staying updated on industry advancements."
Head of Foresight - Future Technologies
Freudenberg Technology Innovation SE & Co. KG
 
 
 

Subscription Enquiry