2024년에 1억 4천만대 이상이 출하될 것으로 예상되는 차량용 레이더는 지난 25년간 자동차 시장에서 입지를 다져왔으며, 앞으로도 성장할 것으로 예상됩니다. 이번 보고서에서는 4D 이미징 레이더, 첨단 반도체 기술로의 전환, 분산 레이더 시스템, 진화하는 안테나 기술에 대한 분석 및 새로운 안전기준, ADAS 기능, 자율주행차 보급확대 등 자동차 산업에서 레이더에 영향을 미치는 주요 동향 및 성장 요인을 평가하며, 향후 20년간 시장 예측 및 전망을 제공합니다.
이 보고서에서 차량용 레이더 시장에 대해 아래와 같은 주요 정보를 제공합니다.
자동차용 레이더의 채택을 촉진하는 요인들
- ADAS 기술 채택 증가
- 더욱 정교한 ADAS 기술의 등장
- 자율 주행 기술의 발전
- 안전 기준 강화
개인용 자동차, 로보택시 및 자율주행 이동서비스에 대한 레이더 요구 사항
레이더 내 성능 트렌드
성능 향상을 주도하는 기술 동향 및 신기술
4D 이미징 레이더, 기술 설명 및 주요 제품 벤치마킹
레이더 기술의 변화
- 주파수
- 파형
- 레이돔
- 안테나
- 반도체
주요 티어1 기업의 자동차 시장 특성 및 주요 OEM의 레이더 선택에 대한 분석 (지역별, 레이더 유형별)
향후 20년 시자전망
- 자동차 시장 단위 판매량
- 차량용 레이더 판매량 및 매출(미화 10억 달러)
- 레이더에 대한 재료 수요(백만 m2)
이 보고서에서 다루는 주요 내용/목차는 아래와 같습니다.
1. 핵심 요약
a) 개요
b) 주요 예측
i. SAE 수준별 2020-2045년 단위 판매량
ii. 지역별 2020-2045년 판매량(미국, 중국, EU + 영국 + EFTA, 일본, 기타지역)
iii. SAE 수준별 2020-2045 년 자동차 레이더 시장 매출
2. 소개
a) 레이더의 구조
b) 자동차에 레이더의 활용 방법과 이유
c) 레이더 채택을 촉진하는 요인
i. 안전성
ii. 자율 주행
3. 소비자 자동차의 규제 및 안전요인
a) 자율 주행 관련 규제
b) 레이더를 요구하는 필수 안전 기능
c) 레이더를 권장하는 NCAP 테스트
4. 소비자용 자동차 및 차량용 레이더
a) 레이더 기반 ADAS 기능의 채택
b) 지역별 차량별 레이더 숫자
c) 일부 ADAS 기능에 대한 레이더의 대체기술
d) 시장에 출시된 레벨 2+ 및 레벨 3 차량 사례
5. 로보택시용 차량용 레이더
a) 로보택시 시장 선두기업
b) 센서 제품군 사례
c) 업계 전반의 레이더 사용 분석
6. 레이더 제품 및 동향: 티어1, 스타트업, 티어2
a) 주요 티어 1 공급업체의 핵심 제품
b) 레이더 스타트업의 주요 신기술
c) 레이더 성능 동향
d) 4D 이미징 레이더
7. 차량용 레이더 구성 기술
a) 분야별 동향
i. 파형
ii. 채널 수
iii. 주파수
iv. 안테나, 레이돔 및 RF 보드용 저손실 소재
v. 안테나 설계 및 도파관
8. 티어 1 시장 점유율
9. 시장전망
a) SAE 레벨별 자동차 시장 전망, 2020-2045년
b) SAE 수준별 레이더 단위 판매량, 2020-2045년
c) 지역별 레이더 단위 판매량, 2020-2045년(미국, 중국, EU + 영국 + EFTA, 일본, 기타지역)
d) SAE 레벨별 레이더 판매 매출, 2020-2045년
e) 2020-2045년 지역별 SRR 및 LRR 판매량(미국, 중국, EU + 영국 + EFTA, 일본, 기타지역)
f) 가상 채널 수별 레이더 매출, 2020-2045년
g) 동작 주파수 범위별 레이더 판매량, 24GHz 대 77GHz, 2020-2045년
h) 레이더용 저손실 소재(백만m2), 2020-2045년
i. 레이돔
ii. RF 보드
iii. 안테나
IDTechEx's report, Automotive Radar Market 2025-2045: Robotaxis & Autonomous Cars, predicts the automotive radar market will hit 500 million annual sales in 2041. The market share today is dominated by the big tier-one companies like Continental, Bosch, Denso, Aptiv, Hella, ZF, and more, but exciting new technologies are coming to market from startups like Arbe, Uhnder, and Zendar. What's more, there are still new startups being founded in this market, with Waveye, Altos, and Xavveo all coming into existence in the last couple of years. The market is well established with commodity short-range and long-range radar, 4D imaging radar is now emerging and seeing uptake from early adopters, but there are technologies on the horizon that could completely revolutionize automotive radar.
Junction pedestrian automatic emergency braking is one example of a safety driven application that will drive further adoption of short-range radars.
More than 140 million sensors in 2024, but still room to grow
Automotive radar is now a well-established market. Since the mid-2010s, it has become globally common for cars to have radar-enabled features such as automatic emergency braking, adaptive cruise control, and blind spot detection as at least a specifiable option. Now, in the mid-2020s, many vehicles are sold with these features as standard. In particular, automatic emergency braking is widely included as standard on new cars in a growing and important effort to improve road safety, especially for pedestrians and other vulnerable road users.
In 2024, IDTechEx estimates that 1.53 radars will be shipped for each car, totaling more than 140 million units. However, there is still lots of room for growth. This IDTechEx report finds that approximately half of radar sales are long-range radars for forward-facing applications, while the other half is short-range radars for applications like blind spot detection and warning. However, a single blind-spot system uses two radars, meaning blind-spot detection is about half as common as adaptive cruise control and automatic emergency braking. Exact deployment numbers of these features captured over multiple sales years can be found in the report with regional granularity.
Pushes for additional and evermore sophisticated safety features in vehicles will be a key driver for short-range radars. Europe is mandating that some heavier vehicle categories have blind spot warning systems from 2024. In the future, it is likely that blind spot detection will be enforced for passenger vehicles, as well as forward cross-traffic and junction emergency braking systems, which require two additional front radars. This means side radar adoption has the potential to grow fourfold over the next 20 years. While forward-facing radars are approaching saturation levels, there is still a lot of room for improving performance.
4D Imaging Radars Are Coming to Market
For a long time, radar's performance was perfectly adequate for its intended use case, i.e. calculating the distance to the car ahead. But the requirements from the industry are growing, with high-resolution radars being demanded. There are two key drivers for this: safety and convenience. Protecting vulnerable road users is a key driver for new technologies in the automotive industry. Radar has enormous potential here as it can "see" in conditions where cameras and LiDARs are rendered redundant. However, radars of old don't have the imaging performance to confidently separate a human that is standing next to a car from the car itself. This is a key task when trying to accomplish perfect automatic emergency braking performance in all conditions. Additionally, autonomous driving is becoming a reality, but real-world examples today have limitations. With better performance, radar can help overcome those limitations.

4D imaging radar can improve the performance of radar such that they can understand more complex situations, such as separating the car from the bridge in a detection. Expanding on this, next generation radars will detect a person next to the car under the bridge.
4D imaging radars are the emerging next generation, with stacked antenna arrays and hundreds, even thousands of virtual channels. Like pixels in a camera, more virtual channels generally mean better performance, but it isn't the only factor. This report explains what else it takes to make a 4D imaging radar, who has the most exciting and most market-ready technologies, and where the limitations remain. One key limitation still remaining, and with no simple solution, is the package size of radars.
Distributed radar could be the next step
When it comes to imaging, bigger is better. This is why camera phones haven't replaced large DSLR cameras and why the James Webb telescope is over 20ft wide. The same applies to radar; a bigger automotive radar would give better resolution. If a radar was made with an antenna array 2m wide, then its resolution would be similar to a LiDAR. However, the modern flagship radars from leading tier-one suppliers are already hitting the upper limit of what OEMs can integrate, and they are only 10cm by 15cm. The solution that some are pioneering is distributed radar. Putting parts of the radar across the car and creating a much larger virtual antenna. This approach has the potential to return sub-0.1° resolution with all the benefits of imaging with radar, such as distancing, velocity measuring, and its robustness to adverse weather and lighting.
This report and the included company profiles cover a handful of companies working on distributed radar concepts. One is getting close to market deployment, while another has a revolutionary, game-changing proposition for automotive radar, find out which in the report.
This IDTechEx report offers complete coverage of the automotive radar space. It covers the safety and convenience factors driving radar, the areas where the strongest growth is likely to be found, and all the major startup technologies that will define the next generations of radar. All these trends are then captured in IDTechEx 20-year granular forecasts. This report is a complete guide to automotive radar now and in the future.
Key aspects
A complete and comprehensive view of the automotive radar market can be found in this report. Key aspects of the automotive radar industry covered include:
• Forces that are driving further adoption of automotive radar, such as
o Increased adoption of ADAS technologies
o Emergence of more sophisticated ADAS technologies
o Emerging autonomous driving technologies.
o Increasing safety standards
• Radar requirements for private automotive products, emerging robotaxis, and autonomous mobility as a service.
• Performance trends within radar
• Technology trends driving performance improvements and emerging technologies
• 4D imaging radars, technologies explained and key products benchmarked
• Changes to radar technologies;
o Frequencies
o Waveforms
o Radomes
o Antennas
o Semiconductors
• Automotive market characterization and analysis of leading tier-one companies by region, for different radar types, and radar choices of leading OEMs
The forecast chapter then explains how trends within the automotive radar market will play out over the next 20 years:
• Automotive market unit sales
• Automotive radar unit sales and revenue (US$ billion)
• Material demand for radar (million m^2)