수소 경제, 연료 전지 및 수소 생산 방법: IDTechEx

수소 경제의 채택으로 2050년에 수소 생산은 두 배가 될 것이다

수소 경제, 연료 전지 및 수소 생산 방법

주요 수소 경제 분석, 및 연료 전지, 전해조 및 관련 시장 기회의 기술 경제 분석


모두 보기 설명 목차, 표 및 그림 목록 가격 Related Content
이 보고서는 수소 경제에 대한 명확하고 객관적인 그림을 제공하여, 독자에게 에너지 운반선으로서 수소의 현재 상태와 향후 발전에 대한 관점을 제공한다. 다양한 연료 전지와 전해조에 대한 완전한 설명을 통해, 독자는 시장의 주요 업체를 포함하여 각 기술의 화학적 원리, 관련 재료, 기술적 한계 및 향후 기회를 이해할 수 있다.
The use of hydrogen technologies is not a utopian concept. Its adoption has already started and with it, the fourth industrial revolution.
 
The report explains the role of hydrogen in the so-called hydrogen economy, emphasising the advantages of its adoption, and showing the current limitations which are hindering its evolution. Then, several solutions to facilitate hydrogen economies' adoption are explained.
 
Beginning with the definition of the hydrogen economy, the importance of hydrogen as an energy carrier will be explained, highlighting its use in multiple sectors, not simply as energy storage material. The importance of hydrogen as an energy vector is driven by the possibility of adopting it in a large variety of sectors, hence coupling different sectors together, while allowing their decarbonization, due to its employment, without the emission of green-house gas (GHG).
 
Besides its consumption, hydrogen can also be produced from several different sources, both renewable and not.
From this general picture it's possible to understand the two main reasons why hydrogen will be used as energy vector:
1. It allows a country to be, to some extent, independent from large energy imports
2. While reducing the GHG emissions
 
 
Because of these reasons, several governments have already started to work on the implementation of a hydrogen economy.
 
Besides the advantages of an integrated hydrogen economy, several barriers must be overcome first. Hydrogen reduction cost is without doubts the most pressing task. Moreover, infrastructures need to be adapted to hydrogen distribution, while policy and regulations must be implemented to ease the integration of hydrogen in current economies. From the technical side, hydrogen technologies like fuel cells and electrolysers, have to be improved to reduce the cost and ease their adoption by the market.
 
Reaching a complete hydrogen economy will be a long process, but it has already started.
 
The concept of hydrogen economy in fact is not new. It was mentioned for the first time around the 1970s, but the large adoption of oil, its low cost, and the high cost of fuel cell technologies made it impossible for these technologies to be adopted. When the problem of global pollution started to be more pressing over the 1990s, and a constant shift toward renewable energies began, an increased interest toward hydrogen technologies has been observed. The first country to seriously consider the hydrogen economy was Japan in 2003. In the next two decades several countries followed the Japanese example, increasing the amount of funding to develop the hydrogen technologies.
 
To date, the major countries developing hydrogen technologies are investing on average $100m per year.
 
Besides the hydrogen cost reduction, improvement of fuel cell and electrolysers is another pivotal target toward the adoption of hydrogen technologies.
 
The fuel cells are the electrochemical devices which allow the conversion of hydrogen and oxygen in water and electricity. This clean technology is one of the key reasons for the adoption of hydrogen as the future energy carrier.
 
Currently, the most adopted fuel cell is the low temperature proton exchange membrane fuel cell (PEMFC). Besides the PEMFC other fuel cells have been invented, such as the alkaline fuel cell (AFC), where an alkaline electrolyte is employed. The direct methanol fuel cell (DMFC) is generally considered the holy grail of the fuel cells. The possibility of directly converting a high energy density liquid (methanol) in electricity made this technology very attractive. Other fuel cells, like phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), and solid oxide fuel cells (SOFC), are classified as high temperature fuel cells, because of their high working temperature. The reason for the high temperature FC is because of their higher efficiencies. The high temperature-FCs are meant to be used as a combined heat-and-power (CHP) devices, because only in this way much higher efficiencies (60% - 80%) can be reached.
 
The report provides an in-depth analysis of each FC mentioned, including the high temperature PEMFC, specifying for each technologies the materials adopted, limitations, and possible applications. Moreover, the main companies involved in the commercialization of fuel cells are provided.
 
Besides the fuel cells which convert hydrogen in electricity and water, the electrolysers performed the opposite reaction, converting water in hydrogen. Fuel cells and electrolysers, are very similar in structure and material involved, but with some differences in active components. The electrolysers currently manufactured are the proton exchange membrane electrolysers (PEMEL), the alkaline electrolysers (AEL), and still under development the solid oxide electrolysers (SOEL).
 
The report will provide a complete analysis of AEL and PEMEL, specifying the different materials involved, and highlighting advantages and disadvantages of each technology.
 
For the different fuel cells and electrolysers, the major companies involved in their commercialization are mentioned, giving to the reader an overview of the major companies involved in the different markets.
IDTechEx의 분석가 액세스
모든 보고서 구입에는 전문가 분석가와의 최대 30분의 전화통화 시간이 포함되어, 보고서의 주요 결과를 귀하가 제시하는 비즈니스 문제에 연결하도록 돕습니다. 이 전화통화는 보고서를 구매한 후 3개월 이내에 사용해야합니다.
추가 정보
이 보고서에 대해 궁금한 점이 있으시면 언제든지 research@IDTechEx.com으로 보고서 팀에 문의하거나, 영업 관리자에게 문의하십시오

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
ASIA (Korea): +82 10 3896 6219
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Executive Summary: Hydrogen Technologies
1.2.Executive Summary: Why a Hydrogen Economy
1.3.Executive Summary: A vision of the hydrogen economy
1.4.Executive Summary: Development of hydrogen economy
1.5.Executive Summary: Countries Approach to reduce H2 Cost
1.6.Executive Summary: Why should hydrogen take off now?
1.7.Executive Summary: What will happen in the future?
1.8.IDTechEx Forecasted Hydrogen production 2020-2050
1.9.Foreseen targets from National Hydrogen Roadmaps
2.HYDROGEN ECONOMY
2.1.The Hydrogen Economy: Overview
2.2.Have we found the Chicken and the Egg?
2.3.How Green H2 production will increase RES installations
2.4.Hydrogen Economy Development Issues
2.5.Why not a "Battery Economy"?
2.6.What about BEV and FCEV?
2.7.BEV and FCEV Efficiency Comparison
2.8.When we will see the hydrogen economy
3.REGIONAL ANALYSIS
3.1.Europe
3.1.1.European Union approach toward hydrogen
3.1.2.The European Green Deal
3.1.3.European hydrogen economy
3.1.4.Projects in EU
3.1.5.Status and Limitations of a Hydrogen Economy in EU?
3.1.6.Europe in summary
3.1.7.European Approach toward Hydrogen
3.2.Germany
3.2.1.Germany Coal Phase out
3.2.2.The German Decarbonization Process
3.2.3.German National Organisation (NOW)
3.2.4.German National Organisation
3.2.5.Germany is on the way of Hydrogen
3.3.USA
3.3.1.US and Hydrogen
3.3.2.US Hydrogen Roadmap (in a nutshell)
3.3.3.US Industries, a good base for a hydrogen economy
3.3.4.H2 Production costs
3.3.5.DOE - H2@Scale Initiative
3.3.6.H2@Scale funded topics 2020
3.3.7.The US H2 Economy - A Project to be developed
3.3.8.HRS - USA
3.4.Japan
3.4.1.The "Basic Hydrogen Roadmap"
3.4.2.Achieving low cost Hydrogen
3.4.3.The Hydrogen supply chain
3.4.4.The Hydrogen supply chain
3.4.5.Electrolyser Targets
3.4.6.10MW Fukushima Electrolyser
3.4.7.Hydrogen Utilization - Power Generation
3.4.8.Hydrogen Utilization - Mobility
3.4.9.Hydrogen Utilization
3.4.10.The Japanese Hydrogen Society
3.5.China
3.5.1.Chinese Energy Situation - Overview
3.5.2.Chinese Energy Situation - Five Year Plan (FYP)
3.5.3.13th FYP possible targets
3.5.4.Chinese Targets for FC and hydrogen technologies
3.5.5.Financial Subsidy Scheme for NEVs
3.5.6.Hydrogen and FCEVs Objectives
3.5.7.Chinese Approach and Limitations toward Hydrogen
3.5.8.Hydrogen/FC Projects in China
3.5.9.HRS Corridor Project
3.5.10.Chinese Hydrogen Approach
3.6.Other Countries
3.6.1.Relevant Countries working on hydrogen: Korea
3.6.2.Relevant Countries working on hydrogen: Australia
4.FUEL CELL TECHNOLOGIES
4.1.Fuel Cells overview
4.2.Fuel Cells Technologies Overview/Comparison
4.3.Fuel Cells Technologies Overview
4.4.PEMFC Market Players
4.5.Methanol Fuel Cells Market Players
4.6.Alkaline Fuel Cells Market Players
4.7.SOFC Market
4.8.Proton Exchange Membrane Fuel Cell (PEMFC)
4.9.PEMFC Overview
4.10.Polymer Electrolyte
4.11.Electrode Structure and the Three-Phase Boundary
4.12.Bipolar Plates (BPP)
4.13.Bipolar Plates (BPP): Materials
4.14.Water Management
4.15.Cooling Methods
4.16.Fuels Composition
4.17.PEMFC Cost Break Down
4.18.Alkaline Fuel Cell (AFC)
4.19.Alkaline Fuel Cells (AFC): Electrolyte
4.20.Alkaline Fuel Cells (AFC): Mobile Electrolyte
4.21.Alkaline Fuel Cells (AFC): Electrolyte
4.22.Alkaline Fuel Cells (AFC): Static Electrolyte
4.23.Alkaline Fuel Cells (AFC): Electrolyte
4.24.Direct Methanol Fuel Cell (DMFC)
4.25.Direct Methanol Fuel Cell: the (few) advantages
4.26.Direct Methanol Fuel Cell: Drawbacks
4.27.Medium High-Temperature Fuel Cells
4.28.Overview of HT-Fuel Cells
4.29.High Temperature PEMFC (HT-PEMFC)
4.30.Phosphoric Acid Fuel Cell (PAFC)
4.31.PAFC Overview
4.32.PAFC Components
4.33.Molten Carbonate Fuel Cell (MCFC)
4.34.MCFC Overview
4.35.MCFC Fuels
4.36.MCFC Components
4.37.Solid Oxide Fuel Cell (SOFC)
4.38.Solid Oxide Fuel Cell: Overview
4.39.Solid Oxide Fuel Cell: Electrolyte
4.40.Solid Oxide Fuel Cell: Electrolyte Disadvantages
4.41.Solid Oxide Fuel Cell: Electrodes
4.42.Solid Oxide Fuel Cell: Sealing and Connecting Materials
4.43.Solid Oxide Fuel Cell: Cell Design
5.HYDROGEN PRODUCTION
5.1.1.Hydrogen: The Energy Carrier
5.1.2.Hydrogen types
5.1.3.Hydrogen Production Methods
5.1.4.Hydrogen Production Methods: Steam Reforming (SMR)
5.1.5.Hydrogen Production Methods: Partial Oxidation (POX)
5.1.6.Hydrogen Production Methods: Autothermal Reforming (ATR)
5.2.Electrolysers
5.2.1.Electrolyser Overview/Comparison
5.2.2.AEL on the market
5.2.3.PEMEL on the market
5.2.4.SOEL companies
5.2.5.Electrolyser Comparison
5.3.Alkaline Electrolyser (AEL)
5.3.1.Alkaline Electrolyser: Cathode Reaction
5.3.2.Alkaline Electrolyser: Cathode Materials
5.3.3.Alkaline Electrolyser: Anode Reaction
5.3.4.Alkaline Electrolyser: Anode Materials
5.3.5.Alkaline Electrolyser: Electrolyte and Separator
5.3.6.Alkaline Electrolyser: Electrolyser Configurations
5.4.Proton Exchange Membrane Electrolyser (PEMEL)
5.4.1.Proton Exchange Membrane Electrolyser
5.4.2.PEMEL Working Mechanism
5.4.3.OER Electrocatalyst
5.4.4.HER Electrocatalyst
5.4.5.Three Phase Boundary and Proton Exchange Membrane
5.4.6.Current Collectors (CCs)
5.4.7.Separator Plates
5.4.8.PEMEL Overview
5.4.9.Solid Oxide Electrolyser (SOEL or SOEC)
6.APPENDIX
6.1.Hydrogen and Methane Properties
6.2.Fuel Cell Thermodynamic
 

Ordering Information

수소 경제, 연료 전지 및 수소 생산 방법

£$¥
전자 (사용자 1-5명)
£5,650.00
전자 (사용자 6-10명)
£8,050.00
전자 및 1 하드 카피 (사용자 1-5명)
£6,450.00
전자 및 1 하드 카피 (사용자 6-10명)
£8,850.00
전자 (사용자 1-5명)
€6,400.00
전자 (사용자 6-10명)
€9,100.00
전자 및 1 하드 카피 (사용자 1-5명)
€7,310.00
전자 및 1 하드 카피 (사용자 6-10명)
€10,010.00
전자 (사용자 1-5명)
$7,000.00
전자 (사용자 6-10명)
$10,000.00
전자 및 1 하드 카피 (사용자 1-5명)
$7,975.00
전자 및 1 하드 카피 (사용자 6-10명)
$10,975.00
전자 (사용자 1-5명)
¥900,000
전자 (사용자 6-10명)
¥1,260,000
전자 및 1 하드 카피 (사용자 1-5명)
¥1,020,000
전자 및 1 하드 카피 (사용자 6-10명)
¥1,380,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

보고서 통계

슬라이드 195
 

콘텐츠 미리보기

pdf Document Webinar Slides
pdf Document Sample pages
 
 
 
 

Subscription Enquiry