This report is no longer available. Click here to view our current reports or contact us to discuss a custom report.

If you have previously purchased this report then please use the download links on the right to download the files.

유인 전기 항공기: 스마트 시티 및 지역 (2021-2041년)

고정익 항공기, eVTOL(전기 수직이착륙), eCTOL(전기 재래식이착륙), 에어 택시, 태양열 비행기, BEV(배터리 전기차), 연료전지 항공기, 항공기 용 전기 모터, 전기 추진


모두 보기 설명 목차, 표 및 그림 목록 가격 Related Content
현재에는 매우 다르지만, 2041년에는 재래식 및 수직 이착륙으로 균등하게 분할되는 제로 이미션 항공기의 급속 성장에 대한 이해를 돕는다. 최대 100석 규모의 현재 항공기 제조업체들이 신규 제조업체들에 대해 매우 취약한 이유는 무엇인가? 가장 파격적인 기술과 개발자는 누구인가? 배터리가 유리하기는 하지만 연료전지가 입지를 가지는 이유를 이해할 수 있다. 하이브리드 및 개조형에 대한 기회의 창, 모범 사례, 정체 상태 및 자세한 예측.
This report is the first to forecast electric aircraft for 20 years ahead, while reflecting the realities of how the huge new $30 billion market that is identified will be structured. Primarily, it covers aircraft up to 100 passengers and equivalent freighters, touching on how electrification of larger aircraft converges with these to 2050. For example, 2041 will see about half of the zero-emission aircraft market value being in fixed-wing conventional takeoff and landing eCTOL and half in eVTOL but both involving General Aviation and Commercial applications. At the heavier end, fuel cell and hybrid powertrains have a place and that is reflected in the coverage of the report.
 
About one third of the report is dedicated to the technology and two thirds to the projects and aircraft. Because they are key 2021-2041, particular attention is given to batteries, motors, solar and VTOL aerodynamics in the technology sections. However, you can also learn powertrains including voltage trends benchmarked against minigrids and cars. The approach is to reveal commercial opportunities and benefits to society including the new smart cities. The opportunities include those for materials, devices and systems. It is not academic. It is not historical beyond data to compare with forecasts.
 
Uniquely the report has creative ideas and criticism based on the IDTechEx PhD level, multilingual analysts worldwide and over 20 years of studying the subject and visiting the researchers, including having the proponents speak at IDTechEx events. Indeed, only IDTechEx can put it all in the context of what is happening and about to happen in relevant aspects like electric boats and land vehicles, printed and flexible electronics and battery chemistry generally.
 
Only IDTechEx has drill down reports on all these aspects including one specifically on eVTOL aircraft. We reveal how premature deployment of one technology will probably result in a serious accident and how the phasing of commercial success with the various airframes and powertrains will be very different over the coming twenty years. We find that the balance of investment does not reflect the relative market opportunities and it is not fully acknowledged how some options are far safer than others for a variety of reasons. Benchmarking best practice reveals many opportunities to improve cost, safety, multifunctionality and even provide get-you-home features when ground support is unavailable. Some identified projects are guaranteed to fail. Some have far greater potential than investors realise.
 
The Executive Summary and Conclusions is full of new infograms, roadmaps and forecasts, easily grasped. It explains zero-emission aircraft in general aviation/ aerial work GA/AW and in commercial aviation. See how both business sectors involve vertical takeoff and landing eVTOL aircraft and conventional fixed-wing conventional takeoff and landing eCTOL. Both involve air taxis travelling in and between smart cities, freight and other missions. eVTOL multicopters are compared with vectored thrust. We calculate the viability of eVTOL for inside cities and for city-to-city travel showing what will succeed in genuinely saving time and cost against what alternatives will be available on and underground when they deploy.
 
Newly important energy harvesting options are compared by type of aircraft. See six roadmaps from IDTechEx and the giants and 12 IDTechEx forecasts 2021-2041 (numbers, unit value, market value and forecasts by geographic area, aircraft size and powertrain type). Here is the IDTechEx forecast of general aviation 2021-2041, calculating pent-up demand for small fixed-wing aircraft based on historic graphs. Here is analysis of 100 projects in range vs climb and maximum takeoff weight vs range revealing what hybrids achieve vs battery-only and eVTOL performance.
 
Chapter 2 Introduction introduces emissions, certification, regulation, electrification of large aircraft called More Electric Aircraft MEA and battery vs hybrid aircraft. It explains planned 100 seat regional aircraft on batteries alone and long-distance fuel-cell options. See 2021-2041 infograms on "Radical advances in electric thrust" and "Achieving cost parity with conventional aircraft". Work at the giants GE, Honeywell, Raytheon, Rolls Royce and SAFRAN is summarized and the electric uniques of "distributed thrust" and solar airframes are explained, both now becoming extremely important for improving performance, cost and safety. Different eVTOL architectures are compared with helicopters.
 
Chapter 3 is exceptionally long and detailed. It appraises 43 battery-electric fixed-wing aircraft projects revealing technical excellence and mistakes, new technology options such as harnessing superconductivity, wind turbulence and sun, amphibious or achieving 300mph speed. Chapter 4 more briefly does the same for eVTOL. Chapter 6 reveals the opportunity and challenge for fuel cell aircraft fixed wing and eVTOL, showing latest progress and business cases, good compared to bad. Chapter 6 is on hybrid electric aircraft, mainly fixed-wing including imaginative forms for special tasks. Chapters 7,8,9 and 10 cover more detail on eVTOL technology options and business cases because these have the biggest investment and risk yet the least understanding.
 
The report ends with enabling technologies for all electric aircraft - Chapter 11 Batteries, Chapter 12 Motors and Chapter 13 Solar.
 
Questions answered include:
  • World's first detailed forecasts for all electric aircraft 2021-2041?
  • Independent new roadmaps compared to those from proponents to 2041?
  • Critical analysis of technologies and designs?
  • Benchmarking against best practice in aerospace and elsewhere?
  • How is the investment poorly matched against the relative opportunities?
  • How can safety, cost and performance be greatly improved?
  • What are the dead ends?
  • Which companies are good bad or indifferent?
  • What are the lessons from other industries that are further ahead in some respects?
  • What is the research pipeline?
IDTechEx의 분석가 액세스
모든 보고서 구입에는 전문가 분석가와의 최대 30분의 전화통화 시간이 포함되어, 보고서의 주요 결과를 귀하가 제시하는 비즈니스 문제에 연결하도록 돕습니다. 이 전화통화는 보고서를 구매한 후 3개월 이내에 사용해야합니다.
추가 정보
이 보고서에 대해 궁금한 점이 있으시면 언제든지 research@IDTechEx.com으로 보고서 팀에 문의하거나, 영업 관리자에게 문의하십시오

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
ASIA (Korea): +82 10 3896 6219
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Purpose of this report
1.2.Key conclusions
1.3.Comparison of zero-emission air taxis and regional aircraft technologies selling 2021-2041
1.4.The solar option
1.5.Energy independent smart cities and their eCTOL and eVTOL manned aircraft
1.6.eVTOL in detail
1.6.1.What is an eVTOL aircraft?
1.6.2.eVTOL Architectures
1.6.3.Why eVTOL Aircraft?
1.6.4.eVTOL getting off the ground
1.6.5.Conclusions on air taxi time saving
1.6.6.Huge companies investing in eVTOL
1.6.7.Other start-ups attracting large funding
1.6.8.When will the first eVTOL air taxis launch?
1.6.9.eVTOL as urban mass mobility?
1.6.10.Where is eVTOL air taxi advantage?
1.6.11.Value of autonomous eVTOL flight
1.7.Battery requirements and improvement
1.8.Li-ion Chemistry Snapshot: 2020, 2025, 2030
1.9.Motor / powertrain requirements
1.10.Composite material requirements
1.11.Infrastructure requirements
1.12.Electric aircraft roadmaps
1.12.1.IDTechEx detailed manned electric aircraft roadmap 2021-2041
1.12.2.Boeing and NASA electric aircraft roadmaps to 2050
1.12.3.Airbus and United Technologies "More Electric Aircraft MEA roadmap to 2040
1.12.4.Safran electric aircraft roadmap to 2050
1.12.5.Siemens electric aircraft roadmap to 2050
1.13.IDTechEx projected range and climb
1.14.IDTechEx MTOW vs range projection
1.15.Market forecasts 2021-2041
1.15.1.General aviation global sales units 2021-2041
1.15.2.General aviation global value market 2021-2041
1.15.3.Fixed-wing CTOL zero-emission aircraft under 20PAX number 2021-2041
1.15.4.Fixed-wing CTOL zero-emission aircraft under 20PAX unit price 2021-2041
1.15.5.Fixed-wing CTOL zero-emission aircraft under 20PAX $bn value market 2021-2041
1.15.6.Fixed wing CTOL zero-emission aircraft 20-100PAX global number 2021-2041
1.15.7.Fixed wing CTOL zero-emission aircraft 20-100PAX global unit value 2021-2041
1.15.8.Fixed wing CTOL zero emission aircraft 20-100PAX value market 2021-2041
1.15.9.eVTOL Forecast Summary
1.15.10.eVTOL air taxi sales forecast units 2018-2041
1.15.11.eVTOL air taxi market revenue forecast $ billion 2018-2041
1.15.12.Regional share of zero emission aircraft sales value market 2021-2041
1.16.Historical statistics
1.16.1.GAMA General Aviation aircraft sales and market Size
1.16.2.GAMA data for General Aviation global market
1.16.3.Bye Aerospace appraisal of pent-up general aviation demand
1.16.4.Top 5 General Aviation OEMs By Airplane Type
1.16.5.EASA eVTOL market value estimates 2035
1.16.6.Worldwide helicopter fleet
1.16.7.GAMA General Aviation helicopter sales
1.16.8.Helicopter OEMs
2.INTRODUCTION
2.1.Bumble Bees and Electric Aircraft Cannot Fly
2.2.Large single aisle aircraft offer the largest emission gains
2.3.Coming from both ends - small pure electric PEV (BEV) and large more-electric MEA
2.4.Run before you can walk?
2.5.Powertrain options
2.6.Radical advances in electric thrust 2021-2041
2.7.Achieving cost parity - small comes first
2.8.Regulation, legislation, certification
2.9.Involvement of top aerospace manufacturers
2.10.Top 5 aerospace system suppliers by revenue
2.10.1.General Electric USA
2.10.2.Honeywell
2.10.3.Rolls-Royce UK
2.10.4.Raytheon Technologies Corp. USA
2.10.5.SAFRAN France
2.11.Distributed Electric Propulsion
2.12.The Dream of Urban Air Mobility
2.13.Advanced Air Mobility
2.14.eVTOL Applications
2.15.Beating current general aviation aircraft
2.16.Why helicopters are poor for UAM
2.17.Range and Endurance Limitations of eVTOL
2.18.What is making eVTOL possible?
2.19.eVTOL Start-Up Investment
2.20.Materials and energy harvesting integration
2.20.1.Key Challenges for Composites
2.20.2.Energy harvesting options for aircraft: widening choice
2.21.Retrofit
2.22.Infrastructure and transport integration
3.BATTERY ELECTRIC FIXED WING AIRCRAFT
3.1.Overview
3.2.Bye Aerospace USA
3.3.Airbus Europe
3.4.Ampaire Tailwind USA
3.5.Aura Aero France
3.6.Equator Aircraft Norway
3.7.Eviation Aircraft Israel
3.8.Flying Ship Company USA
3.9.Fly Nano Finland
3.10.H55 Switzerland
3.11.Heart Aerospace Sweden
3.12.Luminati Aerospace USA
3.13.NASA
3.13.1.Requirement study
3.13.2.Distributed thrust: X57 Maxwell
3.13.3.Cryogenic hydrogen fuel cell
3.14.PC-Aero / Elektra Solar/ SolarStratos Germany Switzerland
3.15.Pipistrel Slovenia
3.16.Raytheon United Technologies X-Plane USA
3.17.RDC Aqualines Russia
3.18.Regent USA
3.19.Rolls Royce, Tecnam, Wideroe - P Volt UK, Norway
3.20.Rolls Royce ACCEL and other projects UK
3.21.Solar Flight USA
3.22.Wright Electric USA
3.23.Others
4.BATTERY ELECTRIC EVTOL AIRCRAFT
4.1.Airbus Europe
4.2.Archer Aviation USA
4.3.Bell Textron USA
4.4.BETA Technologies USA
4.5.Boeing PAV intermediate fixed wing/ VTOL USA
4.6.EHang China
4.7.Embraer: Eve (EmbraerX) Brazil
4.8.Hyundai: S-A1 Korea
4.9.Jaunt Air Mobility: Journey Air Taxi USA
4.10.Joby Aviation USA
4.11.Lilium Germany
4.12.Moog: SureFly USA
4.13.SkyDrive: SD-XX Japan
4.14.Volocopter Germany
5.FUEL CELL ELECTRIC AIRCRAFT
5.1.Overview
5.2.Airbus fuel cell pods
5.3.Fuel cell projects of the past
5.4.Proton Exchange Membrane PEM fuel cells
5.5.ZeroAvia UK
5.6.NASA cryogenic
5.7.Lange Research Germany
5.8.Fuel Cell eVTOL
5.9.Conclusions for PEM eVTOL
6.HYBRID ELECTRIC AIRCRAFT
6.1.Overview
6.2.Rolls Royce hybrid powertrains UK
6.3.Hybrid aircraft
6.3.1.eSAT "Silent Air Taxi Germany
6.3.2.Faradair BEHA UK
6.3.3.VoltAero France
7.JOURNEY USE-CASES & OPTIMIZATION: WHERE EVTOL HAS AN ADVANTAGE
7.1.Will eVTOL Taxis Reduce Journey Time?
7.2.eVTOL Multicopter vs Robotaxi: 10km Journey
7.3.eVTOL vs Robotaxi: Example 10km Journey
7.4.eVTOL Multicopter vs Robotaxi: 40km Journey
7.5.eVTOL vs Robotaxi: Example 40km Journey
7.6.Multicopter eVTOL vs Robotaxi: 100km Journey
7.7.Vectored Thrust eVTOL vs Robotaxi: 100km Journey
7.8.eVTOL vs Robotaxi: Example 100km Journey
7.9.Important Factors for an Air Taxi Time Advantage
7.10.Conclusions on Air Taxi Time Saving
8.IDTECHEX EVTOL COST ANALYSIS
8.1.TCO Analysis: eVTOL Taxi $/50km Trip (Base Case)
8.2.eVTOL vs Helicopter Operating Cost
8.3.eVTOL Aircraft Upfront Cost
8.4.eVTOL Operational Fuel Cost Savings
8.5.The Value of Autonomous Flight
8.6.TCO vs Helicopters Uber Air $/mile
8.7.Sensitivity to Battery Cost and Performance
8.8.Sensitivity to Upfront / Infrastructure Cost
8.9.Sensitivity to Average Trip Length
8.10.TCO Analysis: $/15km Trip: Multicopter eVTOL Design
8.11.TCO $/15km Autonomous Trip: Multicopter vs Base case
9.EVTOL ARCHITECTURES
9.1.World eVTOL Aircraft Directory
9.2.Geographical Distribution of eVTOL Projects
9.3.Key Players: eVTOL Air Taxi
9.4.Main eVTOL Architectures
9.5.eVTOL Architecture Choice
9.6.eVTOL Multicopter / Rotorcraft
9.7.Multicopter: Flight Modes
9.8.Multicopter / Rotorcraft: Key Players Specifications
9.9.Benefits / Drawbacks of Multicopters
9.10.eVTOL Lift + Cruise
9.11.Lift + Cruise: Flight Modes
9.12.Lift + Cruise: Key Players Specifications
9.13.Benefits / Drawbacks of Lift + Cruise
9.14.Vectored Thrust eVTOL
9.15.Vectored Thrust: Flight Modes
9.16.eVTOL Vectored Thrust: Tiltwing
9.17.Tiltwing: Key Player Specifications
9.18.Benefits / Drawbacks of Tiltwing
9.19.eVTOL Vectored Thrust: Tiltrotor
9.20.Tiltrotor: Key Player Specifications
9.21.Benefits / Drawbacks of Tiltrotor
9.22.When will the First eVTOL Air Taxis Launch?
9.23.Manned Air Taxi eVTOL Test Flights
9.24.Unmanned Air Taxi eVTOL Model Test Flights
9.25.Range and Cruise Speed: Electric eVTOL Designs
9.26.Hover Lift Efficiency and Disc Loading
9.27.Hover and Cruise Efficiency by eVTOL Architecture
9.28.Complexity, Criticality & Cruise Performance
9.29.Comparison of eVTOL Architectures
10.PROGRAMS SUPPORTING EVTOL DEVELOPMENT
10.1.Uber Elevate - Joby Aviation
10.2.Driving Air Taxi Progress: Uber Elevate
10.3.Uber Elevate: Strategic OEM Vehicle Partnerships
10.4.Uber Air Vehicle Requirements
10.5.Uber Air Mission Profile
10.6.U.S. Airforce eVTOL Support - Agility Prime
10.7.US Airforce - Agility Prime
10.8.Agility Prime: Advance Air Mobility Ecosystem
10.9.NASA: Advanced Air Mobility National Campaign
10.10.Groupe ADP eVTOL Test Area
10.11.China's Unmanned Civil Aviation Zones
10.12.UK's Future Flight Challenge
10.13.Varon Vehicles: UAM in Latin America
11.BATTERIES FOR ELECTRIC AIRCRAFT
11.1.Overview
11.2.What is a Li-ion Battery?
11.3.Electrochemistry Definitions
11.4.The Battery Trilemma
11.5.Battery Wish List for an eVTOL
11.6.More Than One Type of Li-ion Battery
11.7.eVTOL Battery Requirements
11.8.Airbus Minimum Battery Requirement
11.9.eVTOL Battery Range Calculation
11.10.Aerospace Battery Pack Sizing
11.11.Importance of Battery Pack Energy Density
11.12.Importance of eVTOL Lift/Drag to Range
11.13.Uber Air Proposed Battery Requirements
11.14.Battery Size
11.15.Batteries Packs: More than Just Cells
11.16.Eliminating the Battery Module
11.17.eVTOL Batteries: Specific Energy Vs Discharge Rates
11.18.Battery500
11.19.E-One Moli Energy Corp.
11.20.Electric Power Systems (EPS): Li-ion Batteries
11.21.Electric Power Systems (EPS)
11.22.Amprius Inc: Silicon Anode
11.23.Leclanche Energy Density Targets
11.24.Moving on from Li-ion?
11.25.Lithium-based Batteries Beyond Li-ion
11.26.Li-ion Chemistry Snapshot: 2020, 2025, 2030
11.27.Lithium-Sulfur Batteries (Li-S)
11.28.Advantages of LSBs
11.29.Li-sulfur energy density
11.30.OXIS Energy: Lithium-Sulfur Batteries
11.31.Lithium-Metal and Solid-State Batteries (SSB)
11.32.Solid Energy Systems - Solid State Batteries
11.33.Sion Power Corporation: Lithium-Metal Battery
11.34.Cuberg: Lithium-Metal Batteries
11.35.Battery Chemistry Comparison for eVTOL
11.36.Battery Fast Charging
11.37.Battery Swapping
11.38.Distributed Battery Modules
11.39.eVTOL Battery Cost
11.40.Development Focus for eVTOL Batteries
12.ELECTRIC MOTORS NEEDED
12.1.eVTOL Motor / Powertrain Requirements
12.2.eVTOL Aircraft Motor Power Sizing
12.3.eVTOL Power Requirement: kW Estimate
12.4.eVTOL Power Requirement
12.5.eVTOL Power Requirement: kW Estimate
12.6.Electric Motors and Distributed Electric Propulsion
12.7.eVTOL Number of Electric Motors
12.8.Motor Sizing
12.9.Electric Motors Designs
12.10.Comparison of Motor Construction and Merits
12.11.Brushless DC Motors (BLDC)
12.12.BLDC Motors: Advantages, Disadvantages
12.13.BLDC: Benchmarking
12.14.Permanent Magnet Synchronous Motors (PMSM)
12.15.PMSM: Advantages, Disadvantages
12.16.PMSM: Benchmarking
12.17.Axial Flux Motors
12.18.Why Axial Flux Motors in eVTOL?
12.19.Yoked or Yokeless Axial Flux
12.20.Axial Flux Motors - Interesting Players
12.21.List of Axial Flux Motor Players
12.22.YASA
12.23.Rolls-Royce / Siemens
12.24.EMRAX
12.25.ePropelled
12.26.H3X
12.27.MAGicALL
12.28.Magnix
12.29.MGM COMPRO
12.30.SAFRAN
12.31.Case-studies
13.STRUCTURAL ELECTRONICS AND ENERGY HARVESTING
13.1.Learning from progress on land
13.2.Colloidal quantum dot spray on solar
13.3.Multi-mode energy harvesting
13.4.Harvesting technologies now and in future for air vehicles
13.5.Mechanical with electrical energy independent vehicles
13.6.Systems for EIEVs
 

보고서 통계

슬라이드 396
전망 2041
ISBN 9781913899431
 
 
 
 

Subscription Enquiry