| 1. | EXECUTIVE SUMMARY |
| 1.1. | Report Introduction |
| 1.2. | Electric Car Forecasts (Unit Sales) |
| 1.3. | Power Electronics in Electric Vehicles |
| 1.4. | Power Electronics Device Ranges |
| 1.5. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
| 1.6. | 800V and SiC Benefits |
| 1.7. | Semiconductor Content Increased |
| 1.8. | SiC Supply Chain |
| 1.9. | Automotive Power Module Market Shares |
| 1.10. | SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales) |
| 1.11. | 800V - 1000V Inverter Forecast (2022-2032) |
| 1.12. | SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW) |
| 1.13. | Onboard Charger Forecast by Power Level 2022- 2032 |
| 1.14. | Inverter, OBC, LV Converter Forecast (GW) to 2032 |
| 1.15. | Automotive Power Electronics Market Size by Device ($ bn) |
| 1.16. | Automotive Power Electronics Market Size by Technology ($ bn) |
| 1.17. | Automotive: Key Application for Sintering |
| 1.18. | Power Electronics Trends Summary |
| 1.19. | The Transition to Silicon Carbide |
| 1.20. | Shrinking Die Sizes with SiC MOSFETs |
| 1.21. | Solders Reach Melting Point |
| 1.22. | Nano Particle Ag Sinter |
| 1.23. | Gamechanger? Threats to Ag - Cu Sintering pastes |
| 1.24. | Die-area Forecast in EV Power Electronics |
| 1.25. | Access to IDTechEx Portal Profiles |
| 2. | ELECTRIC CAR MARKETS |
| 2.1. | Industry Terms |
| 2.2. | Electric Vehicles: Typical Specs |
| 2.3. | The Global Electric Car Market |
| 2.4. | Plug-in Hybrids Doomed |
| 2.5. | Electric Vehicle Drivers |
| 2.6. | Electric Vehicle Barriers |
| 2.7. | Debunking EV Myths: Emissions Just Shift to Electricity Generation? |
| 2.8. | Debunking EV Myths: Emissions Just Shift to Electricity Generation? |
| 2.9. | Fossil Fuel Bans |
| 2.10. | Official or Legislated Fossil Fuel Bans |
| 2.11. | Unofficial, Drafted or Proposed Fossil Fuel Bans |
| 2.12. | Electric Car Forecasts (Unit Sales) |
| 3. | INTRODUCTION TO POWER ELECTRONICS |
| 3.1. | What is Power Electronics? |
| 3.2. | Power Electronics in Electric Vehicles |
| 3.3. | Inverters: Working Principle |
| 3.4. | Full Bridge & Half Bridge |
| 3.5. | Pulse Width Modulation |
| 3.6. | Passive Components |
| 3.7. | DC Link Capacitors |
| 3.8. | Traditional EV Inverter Package |
| 3.9. | Power Switch History |
| 3.10. | Transistor Basics |
| 3.11. | Wide bandgap Semiconductor Basics (1) |
| 3.12. | Wide-bandgap Semiconductor Basics (2) |
| 3.13. | Mitsubishi Electric SiC Device Advancement |
| 3.14. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
| 3.15. | SiC MOSFETs Vs GaN HEMTs in EV (1) |
| 3.16. | SiC MOSFETs Vs GaN HEMTs in EV (2) |
| 3.17. | Automotive GaN Device Suppliers |
| 3.18. | Applications Summary for WBG Devices |
| 3.19. | Semiconductor Content Increased |
| 4. | AUTOMOTIVE INVERTERS |
| 4.1. | Traditional EV Inverter Package |
| 4.2. | Power Device Types |
| 4.3. | Electric Vehicle Inverter Benchmarking |
| 4.4. | Silicon Carbide Size Reductions to Inverter Package |
| 4.5. | SiC Impact on the Inverter Package |
| 4.6. | Rohm Silicon Carbide Inverters |
| 4.7. | The Transition to Silicon Carbide |
| 4.8. | SiC Inverter Experience Curve |
| 4.9. | Limitations of SiC Power Devices |
| 4.10. | SiC Power Roadmap |
| 5. | SUPPLY CHAIN |
| 5.1. | Automotive Power Module Market Shares |
| 5.2. | SiC Supply Chain |
| 5.3. | Power Module Supply Chain & Innovations |
| 5.4. | Value chain for SiC power modules |
| 5.5. | Infineon |
| 5.6. | Infineon Silicon Carbide Roadmap |
| 5.7. | Infineon's HybridPACK is used by Multiple Manufacturers |
| 5.8. | Hyundai E-GMP |
| 5.9. | Hyundai E-GMP 800V Inverter Suppliers |
| 5.10. | ROHM Semiconductor (1) |
| 5.11. | ROHM Semiconductor (2) |
| 5.12. | ROHM Semiconductor (3) |
| 5.13. | STMicroelectronics |
| 5.14. | Delphi Technologies (BorgWarner) |
| 5.15. | Cree Wolfspeed 650V MOSFET |
| 5.16. | Volvo Heavy Duty SiC Inverter |
| 5.17. | Other SiC Inverter Projects & Announcements |
| 5.18. | Ford and BorgWarner |
| 5.19. | Ford and Schaeffler |
| 5.20. | FCA (1) |
| 5.21. | FCA (2) |
| 5.22. | Lordstown Motors |
| 5.23. | General Motors |
| 5.24. | Chevy Bolt Power Module |
| 5.25. | Chevy Bolt Power Module (by LG Electronics / Infineon) |
| 5.26. | GM: Ultium Platform |
| 5.27. | Audi e-tron 2018 |
| 5.28. | Delphi, Cree, Oak Ridge National Laboratory and Volvo |
| 6. | PACKAGE MATERIALS & INNOVATIONS |
| 6.1. | Power Module Packaging Over the Generations |
| 6.2. | Traditional Power Module Packaging |
| 6.3. | Module Packaging Material Dimensions |
| 6.4. | Wirebonds |
| 6.5. | Al Wire Bonds: A Common Failure Point |
| 6.6. | Die and Substrate Attach are Common Failure Modes |
| 6.7. | Advanced Wirebonding Techniques |
| 6.8. | Direct Lead Bonding (Mitsubishi) |
| 6.9. | Tesla's SiC package |
| 6.10. | Tesla Inverter Cross-section |
| 6.11. | Evolution of Tesla's Power Electronics |
| 6.12. | Shrinking Die Sizes with SiC MOSFETs |
| 6.13. | Technology Evolution Beyond Al Wire Bonding |
| 6.14. | Baseplate, Heat Sink, Encapsulation Materials |
| 6.15. | Infineon |
| 6.16. | Continental / Jaguar Land Rover |
| 6.17. | Nissan Leaf Custom Design |
| 6.18. | The Choice of Solder / Die-attach Technology |
| 6.19. | Junction Temperature Increasing |
| 6.20. | Die Attach Technology Trends |
| 6.21. | Silver Sintered Pastes Emerging |
| 6.22. | Automotive: Key Application for Sintering |
| 6.23. | Solders Reach Melting Point |
| 6.24. | Challenges with Ag sintering |
| 6.25. | Nano Particle Ag Sinter |
| 6.26. | Simplifications to the Manufacturing Process |
| 6.27. | Heraeus Die top system with pre applied paste |
| 6.28. | Gamechanger? Embedding: Important Technology for Power Modules |
| 6.29. | Gamechanger? Threats to Ag - Cu Sintered Pastes |
| 6.30. | Cu Sinter Materials |
| 7. | SUBSTRATES |
| 7.1. | The Choice of Ceramic Substrate Technology |
| 7.2. | The Choice of Ceramic Substrate Technology |
| 7.3. | AlN: Overcoming its Mechanical Weakness |
| 8. | APPROACHES TO SUBSTRATE METALLISATION |
| 8.1. | Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation |
| 8.2. | Direct Plated Copper (DPC): Pros and Cons |
| 8.3. | Double Bonded Copper (DBC): Pros and Cons |
| 8.4. | Active Metal Brazing (AMB): Pros and Cons |
| 8.5. | Ceramics: CTE Mismatch |
| 8.6. | Multi-layered Printed Circuit Boards |
| 8.7. | Nissan Leaf Inverter PCB |
| 9. | POWER ELECTRONICS COOLING & THERMAL MANAGEMENT |
| 9.1. | Introduction to EV Thermal Management |
| 9.2. | Active vs Passive Cooling |
| 9.3. | Liquid Cooling |
| 9.4. | Refrigerant Cooling |
| 9.5. | Cooling Strategy Thermal Properties |
| 9.6. | Analysis of Cooling Methods |
| 9.7. | Power Electronics Cooling |
| 9.8. | Optimal Temperatures for Multiple Components |
| 9.9. | Why use TIM in Power Modules? |
| 9.10. | Why the Drive to Eliminate the TIM? |
| 9.11. | Thermal Grease: Other Shortcomings |
| 9.12. | Has TIM Been Eliminated in any EV Inverter Modules? |
| 9.13. | Double-sided Cooling |
| 9.14. | Tesla Model 3 2018 Liquid Cooling |
| 9.15. | Nissan Leaf Liquid Cooling |
| 9.16. | Jaguar I-PACE 2019 (Continental) Liquid Cooling |
| 10. | POWER MODULES 2004-2016 |
| 10.1. | Toyota Prius 2004-2010 |
| 10.2. | BWM i3 (by Infineon) |
| 10.3. | 2008 Lexus |
| 10.4. | Toyota Prius 2010-2015 |
| 10.5. | Nissan Leaf 2012 |
| 10.6. | Renault Zoe 2013 (Continental) |
| 10.7. | Honda Accord 2014 |
| 10.8. | Honda Fit (by Mitsubishi) |
| 10.9. | Toyota Prius 2016 onwards |
| 10.10. | Chevrolet Volt 2016 (by Delphi) |
| 10.11. | Cadillac 2016 (by Hitachi) |
| 10.12. | Manufacturing Process |
| 11. | ONBOARD CHARGERS |
| 11.1. | Onboard Charger Basics |
| 11.2. | Onboard Charger Circuits |
| 11.3. | Tesla Onboard Charger / DC DC converter |
| 11.4. | Tesla SiC OBC |
| 11.5. | Onboard Charger Forecast by Power Level 2022- 2032 |
| 12. | 800-1000V CARS |
| 12.1. | Historic BEV Sales by Voltage Level |
| 12.2. | 800V Platform Announcements |
| 12.3. | Why move to 800+ V? |
| 12.4. | Is all 800V SiC? Audi e-tron 2018 and Porsche Taycan? |
| 12.5. | Is 350kW Needed? |
| 12.6. | Slow AC Chargers Dominate |
| 12.7. | Moving to 800V Requires Deep System Changes |
| 12.8. | Fast Charging at Different Scales |
| 12.9. | Why can't you just fast charge Li-ion? |
| 12.10. | Rate limiting factors at the material level |
| 12.11. | Fast charge design hierarchy - levers to pull |
| 12.12. | Porsche Taycan & Tesla Fast Charge Comparison |
| 12.13. | 800V - 1000V Inverter Forecast (2022 - 2032) |
| 12.14. | Conclusions |
| 13. | FORECASTS |
| 13.1. | On-road Electric Vehicle Forecasts (Vehicles) |
| 13.2. | Inverters per Car Forecast |
| 13.3. | Multiple Motors / Inverters per Vehicle |
| 13.4. | SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales) |
| 13.5. | 800V - 1000V Inverter Forecast (2022 - 2032) |
| 13.6. | SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW) |
| 13.7. | Onboard Charger Forecast by Power Level 2022- 2032 |
| 13.8. | Inverter, OBC, LV Converter Forecast (GW) to 2032 |
| 13.9. | Automotive Power Electronics Market Size by Device ($ bn) |
| 13.10. | Automotive Power Electronics Market Size by Technology ($ bn) |
| 13.11. | Die-area Forecast in EV Power Electronics |
| 13.12. | Die Area Forecasts for SiC MOSFET, Si IGBT, Inverter, OBC, DC DC Converter (m2) |
| 13.13. | Methodology |
| 13.14. | Inverter, OBC & Converter Cost Assumption ($ per kW) |