This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

수직 농법: (2020-2030년)

실내 수직 농법(재배) 기술, 시장 및 전망

모두 보기 설명 목차, 표 및 그림 목록 자주 묻는 질문 가격 Related Content
최근 몇 년 동안 수직 농업에 대한 기대감이 급증해 왔다. 성장 환경을 신중하게 통제하고 수직 재배 시스템을 사용함으로써, 수직 농법은 도시 인구 중심 내에서 기존 농업보다 수백 배 더 높은 수확량을 달성한다. 그러나, 그러한 전력 집약적인 프로세스가 전통적인 농업과 실제로 경쟁할 수 있는가? 이 보고서는 수직 농법 기술을 조사하여, 시장 기회에 대한 통찰력을 제공하고 혁신적인 기술의 미래를 개괄한다.
Vertical farming is the practice of growing plants indoors under fully controlled environmental conditions in many stacked layers, using artificial lighting instead of relying on the sun. By tuning the growing environment to the exact needs of the plant and using soil-free growing techniques, vertical farming can achieve yields hundreds of times higher than conventional agriculture, 365 days a year and without requiring pesticides.
 
Supporters of vertical farming claim it could revolutionise global food production, practically eliminating food miles by enabling crop growth right next to urban population centres. At the moment, fruit and vegetables often travel thousands of miles to reach consumers, losing freshness and quality along the way and increasing the risk of contamination. This has been a particular issue in the US, where recent E. coli outbreaks from contaminated produce have led to hundreds of hospitalisations in recent years. By disrupting the highly centralised model for fresh produce, vertical farming could help overcome these issues, while capitalising on the broader consumer trend towards local production.
 
Investors are responding enthusiastically, with the sector raising over $1 billion in funding since 2015. High profile investments include New Jersey-based start-up AeroFarms raising $100 million in 2019 to expand its aeroponic growing facilities, and Californian start-up Plenty raising $200 million in 2017 in a funding round led by SoftBank Vision Fund, along with backers including Jeff Bezos and Alphabet chairman Eric Schmidt. Across the Pacific, the industry is already well-established – in Japan there are over 200 vertical farms currently operating, with industry leader Spread Co. Ltd. producing 30,000 heads of lettuce every day in its highly automated Techno Farm Keihanna plant.
 
However, despite this optimistic picture, the industry is facing challenges. The sector is littered with bankruptcies – PodPonics and FarmedHere, once operators of the largest vertical farms in the world, closed their doors in 2016 after struggling with spiralling power and labour costs and organisational complexities. Maintaining a controlled environment 24/7 is extremely power-intensive and the everyday running of a vertical farm can require a lot of manual labour, often in environments not designed for the task of growing crops, such as inside shipping containers. Vertical farm operators often end up facing a difficult decision between the high start-up costs of automated, high-tech facilities and the high operating costs of more manual facilities with less advanced climate controls.
 
Nevertheless, enthusiasm remains high and technology is helping to decrease the costs of vertical farming and make large scale urban food production a reality. This report provides an in-depth discussion of the key technology areas that are helping to make vertical farming a reality, identifying areas that could be key to the success of the industry, such as:
• Growing methods
• LEDs and lighting
• Environmental controls
• Sensors
• Automation
• Container farming
 
Based on interviews with 16 major players throughout the sector, this report draws insight into the state of the vertical farming industry, discussing the challenges that the industry faces and the factors involved in creating a successful vertical farming company. The report considers the economics of vertical farming in comparison to conventional agriculture and identifies opportunities for players in the industry and the wider value chain.
 
 
The report goes on to describe the value chain for vertical farming, as well as business models and how the markets for vertical farming change across geographies, contrasting the rapidly emerging markets in North America with the established markets in East Asia. The report then forecasts the future of the vertical farming industry, predicting that it will rise from its current value of $709 million to $1.5 billion by 2030.
IDTechEx의 분석가 액세스
모든 보고서 구입에는 전문가 분석가와의 최대 30분의 전화통화 시간이 포함되어, 보고서의 주요 결과를 귀하가 제시하는 비즈니스 문제에 연결하도록 돕습니다. 이 전화통화는 보고서를 구매한 후 3개월 이내에 사용해야합니다.
추가 정보
이 보고서에 대해 궁금한 점이 있으시면 언제든지 research@IDTechEx.com으로 보고서 팀에 문의하거나, 영업 관리자에게 문의하십시오

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
ASIA (Korea): +82 10 3896 6219
EUROPE (UK) +44 1223 812300
1.EXECUTIVE SUMMARY
1.1.Report overview
1.2.The problem with agriculture
1.3.Is vertical farming the answer?
1.4.Components of a vertical farm
1.5.Vertical farming vs other production methods
1.6.The argument against vertical farming
1.7.The argument for vertical farming
1.8.Investments in vertical farming
1.9.What crops do vertical farms grow?
1.10.Vertically farmed produce has a cost premium
1.11.Production and running costs (OPEX) of a vertical farm
1.12.Consumer perceptions with geography
1.13.The vertical farming value chain
1.14.The three main business models in vertical farming
1.15.Vertically farmed produce: global forecast
1.16.Vertically farmed produce forecast: North America
1.17.Vertically farmed produce forecast: Europe
1.18.Vertically farmed produce forecast: Japan
1.19.Vertically farmed produce forecast: China
2.INTRODUCTION
2.1.What is vertical farming?
2.1.1.The problem with agriculture
2.1.2.Is vertical farming the answer?
2.1.3.How does vertical farming work?
2.1.4.The case for vertical farming
2.1.5.Drivers of vertical farming
2.1.6.Challenges in vertical farming
2.1.7.What crops can vertical farming grow?
2.1.8.Vertical farming vs other production methods
2.1.9.The definition of a vertical farm for this report
2.2.Components of a vertical farm
2.2.1.1.) Structures
2.2.2.2.) Growing systems
2.2.3.3.) Lighting
2.2.4.4.) Nutrient supply: Hydroponics
2.2.5.4.) Nutrient supply: Aeroponics
2.2.6.4.) Nutrient supply: Aquaponics
2.2.7.5.) Air conditioning
2.2.8.6.) CO2 supply unit
2.2.9.7.) Environmental control units
3.TECHNOLOGIES IN VERTICAL FARMING
3.1.Growing techniques
3.1.1.Hydroponics vs aeroponics
3.1.2.Aeroponics technologies
3.1.3.AeroFarms
3.1.4.How does AeroFarms' system work?
3.1.5.LettUs Grow
3.1.6.The trouble with aquaponics
3.1.7.Reasons why aquaponics is often unprofitable
3.1.8.Seed & Roe
3.1.9.Vertical growth walls and towers
3.1.10.Are vertical growth towers more efficient?
3.1.11.Plenty
3.2.LEDs and lighting
3.2.1.LEDs and photosynthesis
3.2.2.Photosynthesis and yield
3.2.3.Maximising photosynthesis
3.2.4.Light "recipes" for indoor crop growth
3.2.5.Light recipe has a major impact on the crop
3.2.6.Choosing the right LEDs for a vertical farm
3.2.7.Choosing LED grow lights for vertical farming
3.2.8.Signify
3.2.9.Signify GreenPower production module specifications
3.2.10.LumiGrow
3.2.11.Heliospectra
3.2.12.Heliospectra's product families
3.2.13.Improving LED technology and vertical farming
3.2.14.Sherpa Space
3.3.Controlling the environment
3.3.1.Heating, ventilation and air conditioning (HVAC)
3.3.2.Factors in HVAC systems
3.3.3.The importance of sensors and data
3.3.4.Where can sensors be used in a vertical farm?
3.3.5.CO2 sensors are essential for vertical farms
3.3.6.The importance of light sensors
3.3.7.Light sensors - complete spectrum vs. multispectral
3.3.8.Smart sensor companies in horticulture
3.3.9.Aranet
3.3.10.IDTechEx reports on sensors
3.4.Automation in vertical farming
3.4.1.Automation is not yet widespread in vertical farming
3.4.2.Technology adoption in vertical farming
3.4.3.Automation: environmental control
3.4.4.Autogrow
3.4.5.Priva
3.4.6.Automation: nutrient control
3.4.7.Imagination Garden
3.4.8.Automation: light recipes
3.4.9.Bowery Farming
3.4.10.Taking automation beyond level 2
3.4.11.Logiqs
3.4.12.Is automation worth it?
3.4.13.Intelligent Growth Solutions
3.4.14.SananBio US
3.4.15.What could automation provide?
3.4.16.Automation and robotics in conventional agriculture
3.4.17.Vertical farming facilities: better to go big or small?
3.4.18.Jones Food Company
3.5.Pests and diseases
3.5.1.Pest management
3.5.2.Common diseases in vertical farming
3.6.Container farming
3.6.1.Freight Farms
3.6.2.Advantages of container farming
3.6.3.Disadvantages of container farming
3.6.4.Vertical Crop Consultants
3.6.5.Is container farming a good idea?
3.6.6.A comparison of container farms
3.6.7.Cubic Farm Systems Corp.
3.6.8.Urban Crop Solutions
4.CHALLENGES IN VERTICAL FARMING
4.1.The risks of vertical farming
4.2.Vertical farming: ambitious expectations
4.3.PodPonics
4.4.FarmedHere
4.5.The argument against vertical farming
4.6.The argument for vertical farming
4.7.Vertical farming's struggle with profitability
4.8.Vertical farming's high start-up costs
4.9.Can vertical farming save cropland?
4.10.The cost of labour
4.11.The cost of power
4.12.Vertical farming: expectations vs reality
4.13.Is all well at Plenty?
4.14.The importance of location
4.15.Growing Underground
4.16.To succeed, vertical farms must be productive
4.17.Marketing and pricing products
4.18.Vertical farming: the food industry, not the tech industry
4.19.The importance of company direction
4.20.Crop One Holdings
4.21.The need for collaboration
4.22.80 Acres
4.23.Infinite Acres
5.THE ECONOMICS OF VERTICAL FARMING
5.1.Vertical farming vs. conventional agriculture
5.1.1.What crops do vertical farms grow?
5.1.2.Vertically farmed produce has a cost premium
5.1.3.The price of non-organic vegetables in the USA
5.1.4.The retail price of iceberg lettuce in the USA
5.1.5.How productive is an average farm?
5.1.6.The costs of growing romaine lettuce on a farm
5.1.7.The impact of fuel prices on fruit and vegetable prices
5.1.8.Could rising oil prices make vertical farming economical?
5.1.9.Vertical farming and the fruit and vegetable supply chain
5.1.10.A breakdown of food dollars: fresh vegetables at retail
5.1.11.Pricing vertically farmed crops: the Starbucks approach?
5.1.12.Vertical farmed produce vs. organic produce
5.1.13.Beyond iceberg lettuce
5.1.14.Cannabis
5.2.The benefits of local production
5.2.1.The growing market for local food
5.2.2.How much will consumers pay for local food?
5.2.3.Will consumers pay more for vertically farmed produce?
5.2.4.Organic certification: worth the investment?
5.2.5.Presenting vertically farmed produce
5.2.6.Miravel
5.2.7.The value of growing at home
5.2.8.The economics and sustainability of food miles
5.2.9.Food miles are a poor measure of sustainability
5.2.10.Is local production economically beneficial?
5.3.Running costs of a vertical farm
5.3.1.Production and running costs (OPEX) of a vertical farm
5.3.2.The power requirements for vertical farming
5.3.3.The lighting costs of different crops
5.3.4.Could photovoltaics improve the energy costs?
5.3.5.LED costs vary by colour
5.3.6.Is vertical farming sustainable?
6.MARKETS
6.1.Business models in vertical farming
6.1.1.The vertical farming value chain
6.1.2.The three main business models in vertical farming
6.1.3.Turnkey farm solutions: Infarm
6.1.4.Turnkey farm solutions: Agrilution
6.1.5.AeroFarms: the Amazon model?
6.1.6.Investments in vertical farming
6.2.Vertical farming across geographies
6.2.1.Consumer perceptions with geography
6.2.2.Vertical farming in the USA
6.2.3.Square Roots
6.2.4.Food recalls in the USA
6.2.5.Vertical farming in Europe
6.2.6.The state of farming in Europe
6.2.7.The Netherlands leads the world in greenhouse growing
6.2.8.Dutch agritech - implications for vertical farming
6.2.9.Agricool
6.2.10.Vertical farming in the Middle East
6.2.11.Badia Farms
6.2.12.Vertical farming in Japan
6.2.13.Vertical farming in Japan - top 20 producers
6.2.14.Spread Co., Ltd.
6.2.15.Spread Co., Ltd. Production facilities
6.2.16.Vertical farming in China
6.2.17.Is China ready for vertical farming?
6.2.18.Fujian Sanan Sino-Science Photobiotech Co., Ltd
6.2.19.Singapore: ripe for vertical farming?
6.2.20.Urban farming in Singapore
6.2.21.Sustenir
7.FORECASTS
7.1.Market outlook
7.1.1.Vertical farming: outlook
7.2.Vertically farmed produce
7.2.1.Organic fruit and vegetable sales in the USA and EU+UK
7.2.2.Vertically farmed produce: global forecast
7.2.3.Vertically farmed produce forecast: North America
7.2.4.Vertically farmed produce forecast: Europe
7.2.5.Vertically farmed produce forecast: Japan
7.2.6.Vertically farmed produce forecast: China
7.3.Vertical farming hardware
7.4.Container farming forecast (global)
7.5.Turnkey vertical farming hardware forecast (not container farms, global)
8.COMPANY PROFILES
8.1.LettUs Grow
8.2.Spread Co. Ltd.
8.3.Miravel
8.4.Square Roots
8.5.80 Acres
8.6.Signify
8.7.Imagination Garden Inc.
8.8.Autogrow
8.9.n.Thing
8.10.Sherpa Space
8.11.Bowery Farming
8.12.Intelligent Growth Solutions
8.13.Agrilution
8.14.Infarm
8.15.Growing Underground
8.16.Plenty
8.17.CubicFarm Systems Corp
8.18.SananBio US
8.19.Freight Farms
8.20.Infinite Acres
8.21.Priva
8.22.AeroFarms
8.23.Crop One Holdings
8.24.Vertical Crop Consultants
8.25.Badia Farms
8.26.Urban Crop Solutions
8.27.Jones Food Company
 

About IDTechEx reports

What are the qualifications of the people conducting IDTechEx research?

Content produced by IDTechEx is researched and written by our technical analysts, each with a PhD or master's degree in their specialist field, and all of whom are employees. All our analysts are well-connected in their fields, intensively covering their sectors, revealing hard-to-find information you can trust.

How does IDTechEx gather data for its reports?

By directly interviewing and profiling companies across the supply chain. IDTechEx analysts interview companies by engaging directly with senior management and technology development executives across the supply chain, leading to revealing insights that may otherwise be inaccessible.
 
Further, as a global team, we travel extensively to industry events and companies to conduct in-depth, face-to-face interviews. We also engage with industry associations and follow public company filings as secondary sources. We conduct patent analysis and track regulatory changes and incentives. We consistently build on our decades-long research of emerging technologies.
 
We assess emerging technologies against existing solutions, evaluate market demand and provide data-driven forecasts based on our models. This provides a clear, unbiased outlook on the future of each technology or industry that we cover.

What is your forecast methodology?

We take into account the following information and data points where relevant to create our forecasts:
  • Historic data, based on our own databases of products, companies' sales data, information from associations, company reports and validation of our prior market figures with companies in the industry.
  • Current and announced manufacturing capacities
  • Company production targets
  • Direct input from companies as we interview them as to their growth expectations, moderated by our analysts
  • Planned or active government incentives and regulations
  • Assessment of the capabilities and price of the technology based on our benchmarking over the forecast period, versus that of competitive solutions
  • Teardown data (e.g. to assess volume of materials used)
  • From a top-down view: the total addressable market
  • Forecasts can be based on an s-curve methodology where appropriate, taking into account the above factors
  • Key assumptions and discussion of what can impact the forecast are covered in the report.

How can I be confident about the quality of work in IDTechEx reports?

Based on our technical analysts and their research methodology, for over 25 years our work has regularly received superb feedback from our global clients. Our research business has grown year-on-year.
 
Recent customer feedback includes:
"It's my first go-to platform"
- Dr. Didi Xu, Head of Foresight - Future Technologies, Freudenberg Technology Innovation
 
"Their expertise allows us to make data-driven, strategic decisions and ensures we remain aligned with the latest trends and opportunities in the market."
- Ralf Hug, Global Head of Product Management & Marketing, Marquardt

What differentiates IDTechEx reports?

Our team of in-house technical analysts immerse themselves in industries over many years, building deep expertise and engaging directly with key industry players to uncover hard-to-find insights. We appraise technologies in the landscape of competitive solutions and then assess their market demand based on voice-of-the-customer feedback, all from an impartial point of view. This approach delivers exceptional value to our customers—providing high-quality independent content while saving customers time, resources, and money.

Why should we pick IDTechEx research over AI research?

A crucial value of IDTechEx research is that it provides information, assessments and forecasts based on interviews with key people in the industry, assessed by technical experts. AI is trained only on content publicly available on the web, which may not be reliable, in depth, nor contain the latest insights based on the experience of those actively involved in a technology or industry, despite the confident prose.

How can I justify the ROI of this report?

Consider the cost of the IDTechEx report versus the time and resources required to gather the same quality of insights yourself. IDTechEx analysts have built up an extensive contact network over many years; we invest in attending key events and interviewing companies around the world; and our analysts are trained in appraising technologies and markets.
 
Each report provides an independent, expert-led technical and market appraisal, giving you access to actionable information immediately, rather than you having to spend months or years on your own market research.

Can I speak to analysts about the report content?

All report purchases include up to 30 minutes of telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

What is the difference between a report and subscription?

A subscription from IDTechEx can include more reports, access to an online information platform with continuously updated information from our analysts, and access to analysts directly.

Before purchasing, I have some questions about the report, can I speak to someone?

Please email research@idtechex.com stating your location and we will quickly respond.

About IDTechEx

Who are IDTechEx's customers?

IDTechEx has served over 35,000 customers globally. These range from large corporations to ambitious start-ups, and from Governments to research centers. Our customers use our work to make informed decisions and save time and resources.

Where is IDTechEx established?

IDTechEx was established in 1999, and is headquartered in Cambridge, UK. Since then, the company has significantly expanded and operates globally, having served customers in over 80 countries. Subsidiary companies are based in the USA, Germany and Japan.

Questions about purchasing a report

How do I pay?

In most locations reports can be purchased by credit card, or else by direct bank payment.

How and when do I receive access to IDTechEx reports?

When paying successfully by credit card, reports can be accessed immediately. For new customers, when paying by bank transfer, reports will usually be released when the payment is received. Report access will be notified by email.

How do I assign additional users to the report?

Users can be assigned in the report ordering process, or at a later time by email.

Can I speak to someone about purchasing a report?

Please email research@idtechex.com stating your location and we will quickly respond.
 
수직 농법 시장은 2030년까지 10억 달러를 초과 할 것이다.

보고서 통계

슬라이드 451
 

Customer Testimonial

quote graphic
"IDTechEx consistently provides well-structured and comprehensive research reports, offering a clear and holistic view of key trends... It's my first go-to platform for quickly exploring new topics and staying updated on industry advancements."
Head of Foresight - Future Technologies
Freudenberg Technology Innovation SE & Co. KG
 
 
 

Subscription Enquiry