本レポートは最新版が発行されています。 次のリンクをクリックして 最新版をご確認ください。
以前に本レポートを購入済みの方は、ページ右側のダウンロード用リンクより、ダウンロードをお試しください。
1. | Executive summary and conclusions |
1.1. | Purpose of this report |
1.2. | Purpose of 6G |
1.3. | Desired 6G capabilities: frequency, data rate, latency, ubiquity |
1.4. | Potential applications of 6G |
1.5. | Possible 6G architectures |
1.6. | Probable 6G timing to 2045 |
1.7. | Problems that are opportunities |
1.8. | The case against 6G |
1.9. | Primary conclusions |
1.9.1. | Conclusions: National importance and timing |
1.9.2. | Conclusions: Frequency |
1.9.3. | Conclusions: Technology |
1.9.4. | Conclusions: Materials |
1.10. | 6G and RIS roadmap 2021-2041 |
1.11. | Market forecasts |
1.11.1. | 6G smartphones 2021-2041 |
1.11.2. | Terahertz equipment market before 6G arrives |
1.11.3. | 5G mobile shipment units 2018-2030 |
1.11.4. | 5G Power amplifier and beamforming component forecast |
1.11.5. | 5G Semiconductor forecast (2020-2030) for power amplifiers (GaN, LDMOS, SiGe/Si) by die area |
1.11.6. | 2019 shipment of 5G smartphone by vendors |
1.11.7. | Shipment of 5G customer promised equipment and hotspots by units 2018-2030 |
1.11.8. | 5G Thermal interface material and heat spreader forecast in smartphones by area |
1.11.9. | 5G market forecast for services 2018-2030 |
1.11.10. | 5G subscription to mobile service by geography 2018-2030 |
1.11.11. | 5G revenue from mobile service by geography 2018-2030 |
1.11.12. | Fixed wireless access service revenue 2018-2030 |
1.11.13. | NB-IoT revenue 2018-2030 |
1.11.14. | NB-IoT module shipment 2018-2030 |
1.11.15. | 5G station installation forecast (2020-2030) by frequency |
1.11.16. | 5G station instalment number forecast (2020-2030) by type of cell (macro, micro, pico/femto) |
1.11.17. | Power amplifier and beamforming component forecast |
1.11.18. | MIMO size forecast (2020-2030) |
1.11.19. | 5G Antenna elements forecast |
1.11.20. | 5G Antenna PCB material forecast |
1.11.21. | 5G Thermal interface material and heat spreader forecast in smartphones by area |
1.11.22. | 5G Low-loss materials areas forecast by frequency |
1.11.23. | 5G low-loss materials areas forecast by market segments |
1.11.24. | 5G low-loss materials areas forecast by types of materials |
1.11.25. | 5G Low-loss materials forecast by revenue |
1.11.26. | 5G low-loss materials areas forecast base station by frequency |
1.11.27. | 5G low-loss materials areas forecast base station by components |
1.11.28. | 5G low-loss materials areas forecast in CPE and hotspots by material types |
2. | Introduction |
2.1. | Definition and context |
2.2. | Escalating economic and technology impact of 6G |
2.3. | Optimisation of localization, sensing and communication together |
2.4. | 6G enabling technologies, new application opportunities and technological challenges. |
2.5. | Almost nothing is decided |
2.6. | Timing of 6G introduction |
2.7. | Some consensus on needs and feasibility |
2.8. | Compromises are inevitable |
2.9. | Some challenges that are opportunities |
2.10. | Materials overview |
2.11. | 6G will leverage other terahertz electronics |
2.11.1. | Overview |
2.11.2. | Example: Biomedical terahertz imaging and sensing |
3. | Key devices: Reconfigurable Intelligent Surfaces / software controlled metasurfaces for 6G |
3.1. | Terminology and functionality |
3.2. | Challenges |
3.3. | Anatomy |
3.4. | Examples of materials |
3.5. | Tunability |
3.6. | CEA-Leti EU Project |
4. | Key devices: Provision of device power by WIET and energy harvesting, 6G impact on sensing |
4.1. | Wireless information and energy transfer WIET |
4.1.1. | Terahertz radiation harvesting generally |
4.2. | Energy harvesting systems considerations |
4.3. | Energy harvesting devices and materials for 6G |
4.3.1. | Overview |
4.3.2. | Primary conclusions: market and technology dynamics |
4.3.3. | Primary conclusions: technology specifics |
4.3.4. | Primary conclusions: Emerging industries |
4.3.5. | Healthcare |
4.3.6. | Military, industrial, automotive and aerospace |
4.3.7. | Multimode harvesting, no battery |
4.3.8. | Device power harvested and needed in device use with examples |
4.3.9. | Power range needed |
4.3.10. | Energy harvesting options to power electronic devices |
4.3.11. | Most promising future applications by preferred technology |
4.3.12. | Energy harvesting for electronics forecasts - summary and roadmap 2020-2040 |
4.3.13. | Photovoltaic energy harvesting for electronics: units, unit price, market value 2020-2040 |
4.3.14. | Thermoelectric energy harvesting for electronics: units, unit price, market value 2020-2040 |
4.3.15. | Piezoelectric energy harvesting for electronics: market units, unit price, market value 2020-2040 |
4.3.16. | Triboelectric transducer and self-powered sensors 2020-2040 $ million |
4.3.17. | Electrodynamic energy harvesting for electronics: units, unit price, market value 2020-2040 |
4.3.18. | Forecast for pico products with integral harvesting |
4.3.19. | Addressable end uses for energy harvesting for electronics |
4.4. | Sensing and imaging at higher frequencies and more locations |
5. | Key devices: FSO, optical devices and THz antennas for 6G |
5.1. | Fiber optics and Free Space Optical FSO |
5.2. | Optical devices: LED, LD, PIN photodiode |
5.3. | Erbium-doped fiber amplifiers EDFA |
5.4. | Optical transceivers demand increase |
5.5. | Attempts to limit use of fiber even for 5G |
5.6. | Long distance 6G links: Free space optical FSO |
5.7. | New THz antennas for 6G |
5.7.1. | Overview |
5.7.2. | Plasmonic antenna improvements |
6. | Key devices : THz transceivers, sources, transistors, diodes, emitters |
6.1. | Terahertz transceivers |
6.2. | Terahertz emitters and detectors |
6.3. | Terahertz transistors |
6.3.1. | Overview |
6.3.2. | InP and GaAs transistors |
6.3.3. | Schottky diode SiC graphene |
7. | Long distance backhaul/ fronthaul: solar HAPS drones, LEO & GEO satellites |
7.1. | Long distance fronthaul/ backhaul aerospace |
7.1.1. | Long distance options compared |
7.1.2. | Small tethered and untethered drones |
7.1.3. | Mei Ying |
7.1.4. | Tethered drones |
7.2. | Upper atmosphere drones |
7.2.1. | Fixed wing |
7.2.2. | Airbus Zephyr |
7.2.3. | AVIC China Caihong (Rainbow) CH-T4 and Morning Star |
7.2.4. | CASIC solar |
7.2.5. | BAE Systems, UK and Australia Defence PHASA-35 |
7.2.6. | Boeing Aurora Odysseus |
7.2.7. | NASA Swift solar drone |
7.2.8. | Luminati Aerospace LLC USA |
7.2.9. | PC-Aero / Elektra Solar Germany |
7.2.10. | Inflated HAPS |
7.2.11. | Thales‐Alenia's Stratobus airship |
7.2.12. | Why Loon died in 2021 |
7.3. | Satellites |
7.3.1. | Overview |
7.3.2. | Low earth orbit LEO |
7.3.3. | GEO |
8. | Key materials: Graphene for 6G |
8.1. | Graphene basics |
8.2. | Graphene in 6G and THz electronics amplifiers |
8.3. | Graphene electrically-controlled metasurfaces |
8.3.1. | Overview |
8.3.2. | Graphene optically programmed metasurfaces |
8.3.3. | Graphene metasurface example |
8.4. | Graphene oscillators and transceivers |
8.5. | Graphene modulator |
8.6. | Graphene THz antennas and plasmonics |
8.7. | Graphenea |
9. | Key materials: III-V compounds and SiGe in 6G |
9.1. | lll-V compounds and SiGe for 6G are a natural progression from 5G |
9.2. | lll-V compounds for 6G |
9.3. | Materials progress towards 6G THz semiconducting devices |
9.4. | The terahertz gap |
9.5. | GaAs and InGaAs |
9.6. | GaN |
9.7. | InN |
9.8. | InP |
9.9. | 5G semiconductors as a comparison |
10. | Key materials: Polymers and low loss materials and for 6G including liquid crystal and fluoropolymers |
10.1. | Overview |
10.2. | Opportunities for low loss materials in mmWave 5G and THz 6G |
10.3. | Liquid crystal polymers for 6G systems |
10.4. | Fluoropolymers for THz frequencies |
11. | 5G anatomy and transition to 6G |
11.1. | 5G to 6G transition |
11.2. | Hardware performance of 5G vs 6G devices |
11.3. | Device winners and losers in 5G to 6G transition |
11.4. | Materials winners and losers in 5G to 6G transition |
11.5. | 5G, next generation cellular communications network |
12. | Company profiles |
12.1.1. | Ampleon |
12.1.2. | Analog Devices |
12.1.3. | AT&T: 5G overview |
12.1.4. | Avary/ZDT |
12.1.5. | Career Technology: key supplier for LCP materials |
12.1.6. | China Mobile: 5G overview |
12.1.7. | Cree-Wolfspeed |
12.1.8. | Ericsson: overview |
12.1.9. | Huawei: Overview |
12.1.10. | Infineon |
12.1.11. | Intel: Overview |
12.1.12. | IQLP |
12.1.13. | KGK Kyodo Giken Kagaku |
12.1.14. | KT Corporation: 5G overview |
12.1.15. | MACOM |
12.1.16. | MediaTek: 5G overview |
12.1.17. | Mitsubishi Electric |
12.1.18. | NEC: 5G overview |
12.1.19. | Nokia: Overview |
12.1.20. | Northrop Grumman |
12.1.21. | NTT docomo: 5G overview |
12.1.22. | NXP Semiconductor |
12.1.23. | Ooredoo: 5G overview |
12.1.24. | Orange: 5G overview |
12.1.25. | Qorvo |
12.1.26. | Qualcomm: overview |
12.1.27. | RFHIC |
12.1.28. | Samsung: 5G overview |
12.1.29. | Saudi Telecom Company (STC): 5G overview |
12.1.30. | SK Telecom: 5G overview |
12.1.31. | Skyworks Solutions: overview |
12.1.32. | Sumitomo Electric |
12.1.33. | SYTECH: LCP FCCL in SYTECH for mmWave 5G |
12.1.34. | Telefónica: 5G overview |
12.1.35. | Verizon: 5G overview |
12.1.36. | Vodafone: 5G overview |
12.1.37. | ZTE: 5G Overview |
スライド | 394 |
---|---|
フォーキャスト | 2041 |
ISBN | 9781913899301 |