自動運転トラック 2024-2044年:技術、トレンド、予測

自動運転大型トラック - 米国、EU、中国のトラック市場、有力企業、トレンド、安全性、規制、業界分析、自動運転トラック用センサー、MaaS(モビリティ・アズ・ア・サービス)、実現技術、市場予測

製品情報 概要 目次 価格 Related Content
本レポートでは、自動運転トラックの市場、技術、有力企業を解説しています。10社を超える各国のプレーヤーを取り上げ、プレーヤーと活動についての詳細な分析を提供しています。2019年以降の地域別(中国、欧州、米国、その他の地域)の販売実績データと、2024年から2044年までの市場予測を掲載し、この製品分野における最も包括的な調査となっています。自動運転トラック市場が2044年までに1200億ドルを超える規模に成長すると予測するなど、大きな機会があることを明らかにしています。
「自動運転トラック 2024-2044年」が対象とする主なコンテンツ
(詳細は目次のページでご確認ください)
● 全体概要(自動運転トラック輸送業界に影響を与える主なトレンドと予測)
● 自動運転トラック:プレーヤーと分析
□ トラック輸送業界とSAE自動運転レベルの紹介
□ 自動運転を管轄する規制当局の分析 - EU、米国、中国
□ プレーヤー一覧 - スタートアップ企業
□ プレーヤー一覧 - 既存のトラックメーカー
□ プレーヤー一覧 - 現在は活動をしていないトラック輸送企業
□ 自動運転トラックの冗長性
□ トラックの分析 - 市場成熟度、成熟期、資金調達
□ トラックの分析 - 試験走行距離、コース、パートナー、時間、場所、速度、認可機関
□ トラックの分析 - ビジネスモデルとTCO(総所有コスト)の分析
□ トラックの分析 - 主な推進要因と残されたハードル
● トラックにおける自動運転への取り組みと進捗状況の概要
□ 車両タイプ別に見る場所
□ 車両とバリューチェーンにおける企業の位置
□ 注目の企業
□ 自動運転トラックのSWOT分析と比較
□ IDTechExの予想タイムライン
● 実現技術:カメラ
□ CMOSの分類、動作原理、動作プロセス、スキャン方式の種類、要件
● 実現技術:サーマルカメラ
□ サーマルカメラのSWOT
□ 高解像度・低コストのIRセンサーの課題
● 実現技術: IR、NIR、SWIR用光学センサー材料としての量子ドット
□ IR、NIR、SWIRの分類、動作原理、動作プロセス、要件
● 実現技術: LiDAR
□ LiDARの分類、動作原理、動作プロセス、要件
□ LiDARのSWOT
● 実現技術: レーダー
□ レーダーのSWOT
□ レーダーの主要コンポーネント、4Dレーダー、イメージングレーダー
● 予測
□ 大型トラックの販売台数 2023-2044年
□ 自動運転トラックの価格設定 2018-2044年
□ 大型トラックの収益 2023-2044年
□ 自動運転トラックの走行距離と役務収益 2023-2044年
□ 自動運転トラックのパワートレイン 2023-2044年
□ 自動運転トラック用センサー 2021-2044年
 
「自動運転トラック 2024-2044年」は以下の情報を提供します
本レポートの主な事項:
  • 自動運転トラック輸送業界の概要
  • 各プレーヤーの製品、商用化、活動の概要
  • 自動運転運送車両のトレンドと性能分析
  • 実現技術の概要(カメラ、サーマルカメラ、IR・NIR・SWIR用光学センサー材料としての量子ドット、LiDAR、レーダーなど)
  • 自動運転トラックの今後20年間の販売台数と収益の詳細予測
 
In recent years, the development of autonomous driving technology in the trucking industry has progressed rapidly, with numerous technology companies and truck manufacturers initiating commercial trials of autonomous heavy-duty trucks. Although full commercialization remains some distance away, the advancements in this technology offer substantial potential for addressing current industry pain points.
 
Critical Challenges in the Trucking Industry
Today, the trucking industry faces critical challenges, including high operational costs, driver management issues, and safety concerns. According to the American Trucking Association (ATA), the U.S. trucking industry faced a shortfall of more than 100,000 drivers, a number that could increase to 160,000 by 2028. The industry needs to hire one million drivers over the next decade to bridge this gap, replace retiring drivers, and meet growing shipping demands. Attracting younger generations is particularly challenging as they are reluctant to spend extended periods away from home. The aging population in Asian countries like China is expected to exacerbate labor issues in the next decade. The driver shortage has significantly increased international freight transportation costs and operational expenses for trucking companies. Autonomous heavy-duty trucks offer a solution to these challenges. Autonomous driving systems can eliminate distractions and human errors, thereby improving safety. They also enable more efficient communication with other vehicles and devices, streamlining operations and enhancing overall efficiency.
 
Industry Dynamics and Market Shifts
IDTechEx has observed significant activity in the heavy-duty long-haul trucking sector, some companies, such as Inceptio, Deepway, and Einride, have advanced from the proof-of-concept stages to securing small-scale commercial opportunities. However, the fall of several industry giants, including TuSimple, Waymo, and Embark, underscores the significant challenges faced in the autonomous trucks sector. This highlights the volatile nature of the industry and the hurdles in transitioning from innovation to large-scale commercial viability. Autonomous trucks were once considered one of the most commercially valuable and rapidly monetizable products in the autonomous driving sector, with American and European companies playing pivotal roles in their early development. However, post-pandemic global freight fluctuations and the pace of autonomous driving regulation implementation have slowed commercialization. Leading companies such as Waymo and TuSimple have either exited the autonomous trucking market or scaled down their strategic focus.
 
As regulations for autonomous driving gradually take shape to drive commercialization, Total Cost of Ownership (TCO) will become a decisive factor in determining the penetration rate of autonomous truck systems. Due to the extensive operating hours of trucks, energy consumption and labor costs are major factors influencing the TCO of autonomous trucks. Although the industry claims that autonomous truck systems can reduce costs by over 15% and eliminate labor costs, IDTechEx has conducted practical calculations to determine the TCO for different levels of autonomous systems (L0, L2, L3, L4) across various markets. Additionally, IDTechEx has compared the TCO of internal combustion engine (ICE) platforms with electric platforms.
 
Comprehensive Analysis and Future Outlook
This report explains the reasons behind the development of the autonomous trucking industry, including policy support for autonomous vehicles and trucks in Asia, the U.S., and Europe, future policy forecasts, and the movements of over a dozen key players based on IDTechEx's proprietary research, which includes 20-year forecast data.
 
IDTechEx's in-depth research into the Chinese market highlights the value of China's autonomous truck sector and the capabilities of its startups such as Inceptio, Plus.ai, Pony.ai, TrunkTech. IDTechEx also examines different drivetrain configurations for autonomous trucks and proposes correlations between energy types and vehicle performance.
 
Key Aspects
This report on Autonomous Trucks provides a detailed analysis of the players and activities within the sector. Current market is contextualised through historical data on sales back to 2019, with regional granularity across China, Europe, USA and RoW. Key challenges and opportunities are identified for the industry, with predictions regarding their commercial deployment and Regional policies. The high-fidelity analysis of each market guides IDTechEx's 20-year forecasts.
 
Key aspects of this report include:
 
  • An overview of the Autonomous trucking industry
  • A summary of each player's product, commercialization, and activity
  • Autonomous trucking vehicle trends and performance analysis
  • An overview of Enabling Technologies include Cameras, Thermal Cameras, Quantum Dots as Optical Sensor Materials for IR, NIR, SWIR, LiDAR, and Radar.
  • Granular 20-year forecasts for Autonomous trucking sales and revenue
Report MetricsDetails
Historic Data2019 - 2023
CAGRThe global heavy-duty autonomous trucks market across all drivetrains will reach 1,252k units by 2044, compared to 13.1k in 2024 - a CAGR of 25.61% over 20 years.
Forecast Period2024 - 2044
Forecast Unitsunits, US$
Regions CoveredWorldwide, United States, China, Europe
Segments CoveredTrucks, electric trucks, autonomous trucks, sensors, transport as a service, trucking as a service, autonomous hub to hub
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
1.EXECUTIVE SUMMARY
1.1.Autonomous trucking - Industry Overview
1.2.Autonomous trucking - the right conditions right now
1.3.Why Automate Trucks?
1.4.Number Of Active Companies
1.5.The Sensor Trio
1.6.Different powertrains for different vehicles
1.7.Business model options for autonomous trucks
1.8.SWOT analysis for autonomous trucks
1.9.IDTechEx predicted timelines
1.10.Heavy-Duty Trucking Unit Sales 2019-2044
1.11.Heavy-Duty Trucking Revenue 2023-2044
1.12.Sensors for heavy-duty trucks 2021-2044
1.13.Access More with an IDTechEx Subscription
2.AUTONOMOUS TRUCKS: PLAYERS AND ANALYSIS
2.1.Introduction
2.1.1.Pain points in the trucking industry
2.1.2.Why Automate Trucks?
2.1.3.SAE levels of automation
2.1.4.Level-2 and Level-4 Trucking
2.1.5.Level-4 MaaS for trucking
2.1.6.Authorities for regulating autonomous driving - US
2.1.7.Authorities for regulating autonomous driving - China
2.1.8.Authorities for regulating autonomous driving - EU
2.2.Players - Start-ups
2.2.1.Startups list
2.2.2.TuSimple - Overview
2.2.3.TuSimple - Overview
2.2.4.TuSimple's Timeline
2.2.5.Perception system of TuSimple's autonomous trucks
2.2.6.Plus - Overview
2.2.7.Plus - Sensor Suite
2.2.8.Plus - Testing, Trials and Deployments
2.2.9.Inceptio - Overview
2.2.10.Inceptio - Sensor Suite
2.2.11.Inceptio - Testing
2.2.12.Inceptio - Partners and Customers
2.2.13.Einride - Overview
2.2.14.Einride: A closer look into the T-pod and E-truck
2.2.15.Einride - Partners
2.2.16.Einride - The Grids Concept
2.2.17.Einride - The Grids Concept
2.2.18.Kodiak Robotics - Overview
2.2.19.Kodiak - Sensor Suite
2.2.20.Kodiak - Trials and Business Model (1)
2.2.21.Kodiak - Trials and Business Model (2)
2.2.22.Torc Robotics - Overview
2.2.23.Torc Robotics - Sensor Suite (Gen 2)
2.2.24.Torc Robotics - Testing and Trials (1)
2.2.25.Torc Robotics - Testing and Trials (2)
2.2.26.Aurora
2.2.27.Aurora - Sensor Suite
2.2.28.Aurora - Trials, Rollout and Business Model
2.2.29.Pony.ai
2.2.30.Pony.ai - Business Model
2.2.31.DeepWay - A Baidu Founded Start-up
2.2.32.DeepWay - Sensor Suites
2.2.33.DeepWay - Trials (1)
2.2.34.DeepWay - Trials (2)
2.2.35.Terraline (Formerly Solo AVT)
2.2.36.TrunkTech
2.3.Players - Established Truck OEMs
2.3.1.Volvo Truck - Overview
2.3.2.Volvo Truck - Vera and VNL
2.3.3.Tesla
2.3.4.Daimler (1)
2.3.5.Daimler (2)
2.3.6.MAN
2.3.7.Scania
2.3.8.Hyundai
2.4.Trucking Players That Are No Longer Active
2.4.1.Embark - Overview
2.4.2.Waymo - Background
2.5.Redundancy in Autonomous Trucks
2.5.1.Redundancy in Different Systems
2.5.2.Redundant Systems
2.5.3.Daimler Trucks - Redundancy in Braking Control
2.5.4.Daimler Trucks - Steering and Communication
2.5.5.Continental - Brakes (not Heavy-Duty Specific)
2.5.6.Bosch - Brakes and Steering (not Heavy-Duty Specific)
2.5.7.TuSimple - Functional Safety
2.5.8.TuSimple - Hardware Failure Tolerance
2.5.9.TuSimple - Software Fault Tolerance
2.5.10.TuSimple - Functional Safety Overview
2.5.11.Plus.AI - Single Sensor Type Redundancy
2.5.12.Kodiak - Localisation Redundancy
2.5.13.Aurora
2.5.14.Mobileye - A Different Approach to Redundancy
2.5.15.Redundancy in Connected Technologies
2.6.Truck analysis
2.6.1.Technology Maturity Status Definitions
2.6.2.Market readiness level of L4 autonomous truck companies 2022
2.6.3.Market Readiness Level of L4 Autonomous Truck Companies 2024
2.6.4.Maturity
2.6.5.Fundings Raised and Received (1)
2.6.6.Fundings Raised and Received (2)
2.6.7.Fundings
2.6.8.Fundings
2.6.9.Testing Mileage, Trails and Partners
2.6.10.L4 Autonomous Public Road Testing Time, Location, Speed and Approval Authority
2.6.11.Company Backgrounds
2.6.12.Autonomous Trucking Activity (1)
2.6.13.Autonomous Trucking Activity (2)
2.6.14.Total Cost of Ownership Analysis - Assumption and Breakdown
2.6.15.Total Cost of Ownership Analysis
2.6.16.Total Cost of Ownership Analysis
2.6.17.Company Locations (1)
2.6.18.Company Locations (2)
2.6.19.Business Model Options for Start-ups
2.6.20.Business and Operating Model Adoption
2.6.21.6 Key Drivers for Autonomous Trucks (1)
2.6.22.6 Key Drivers for Autonomous Trucks (2)
2.6.23.Remaining Hurdles for Autonomous Trucks
2.6.24.IDTechEx opinion
3.SUMMARY OF AUTONOMOUS ACTIVITY AND PROGRESS IN TRUCKS
3.1.Locations Split by Vehicle Types
3.2.Table of Vehicles and Value Chain Position of Companies in Commercial Autonomy
3.3.Ones to Watch - Autonomous Trucks
3.4.SWOT analysis and comparisons for autonomous trucks
3.5.Commercial readiness and opportunity comparison, roboshuttle, autonomous buses, autonomous trucks.
3.6.IDTechEx predicted timelines
4.ENABLING TECHNOLOGIES: CAMERAS
4.1.Cameras in Autonomous Trucks
4.2.RGB/Visible light camera
4.3.CMOS image sensors vs CCD cameras
4.4.Key Components of CMOS
4.5.Front vs backside illumination
4.6.Reducing Cross-talk
4.7.Global vs Rolling Shutter
4.8.TPSCo: Leading foundry for global shutter
4.9.Sony: CMOS Breakthrough?
4.10.Sony: BSI global shutter CMOS with stacked ADC
4.11.OmniVision: 2.µm global shutter CMOS for automotive
4.12.Hybrid organic-Si global shutter CMOS
4.13.Event-based Vision: A New Sensor Type
4.14.What is Event-based Sensing?
4.15.General event-based sensing: Pros and cons
4.16.What is Event-based Vision? (I)
4.17.What is Event-based Vision? (II)
4.18.What is event-based vision? (III)
4.19.What does event-based vision data look like?
4.20.Event Based Vision in Autonomy?
5.ENABLING TECHNOLOGIES: THERMAL CAMERAS
5.1.Thermal Cameras in Autonomous Trucks
5.2.Segmenting the Electromagnetic Spectrum
5.3.The Need for NIR
5.4.OmniVision: Making Silicon CMOS Sensitive to NIR
5.5.OmniVision: Making Silicon CMOS Sensitive to NIR
5.6.Motivation For Short-Wave Infra-Red (SWIR) Imaging
5.7.Why SWIR in Autonomous Mobility
5.8.Other SWIR Benefits: Better On-Road Hazard Detection
5.9.SWIR Sensitivity of Materials
5.10.SWIR Imaging: Incumbent and Emerging Technology Options
5.11.The Challenge of High Resolution, Low Cost IR Sensors
5.12.Silicon Based SWIR Detection - TriEye
6.ENABLING TECHNOLOGIES: QUANTUM DOTS AS OPTICAL SENSOR MATERIALS FOR IR, NIR, SWIR
6.1.Quantum Dots as Optical Sensor Materials
6.2.Quantum Dots: Choice of the Material System
6.3.Other Ongoing Challenges
6.4.Advantage of Solution Processing
6.5.QD-Si CMOS at IR and NIR
6.6.QD-Si CMOS at IR and NIR
6.7.Hybrid QD-Si Global Shutter CMOS at IR and NIR
6.8.Emberion: QD-Graphene SWIR Sensor
6.9.Emberion: QD-Graphene-Si Broadrange SWIR sensor
6.10.SWIR Vision Sensors: First QD-Si Cameras and/or an Alternative to InVisage?
6.11.SWIR Vision Sensors: First QD-Si Cameras and/or an Alternative to InVisage?
6.12.SWIR Vision Sensors: First QD-Si Cameras and/or an Alternative to InVisage?
6.13.SWIR Vision Sensors: First QD-Si Cameras and/or an Alternative to InVisage?
6.14.QD-ROIC Si-CMOS integration examples (IMEC)
6.15.QD-ROIC Si-CMOS Integration Examples (RTI International)
6.16.QD-ROIC Si-CMOS Integration Examples (ICFO)
6.17.QD-ROIC Si-CMOS Integration Examples (ICFO)
7.ENABLING TECHNOLOGIES: LIDAR
7.1.LiDAR in Autonomous Trucks
7.2.LiDAR classifications
7.3.Automotive LiDAR: Operating process
7.4.Automotive LiDAR: Requirements
7.5.LiDAR system
7.6.LiDAR working principle
7.7.Laser range finder function for the first production car
7.8.Comparison of lidar product parameters
7.9.TOF vs FMCW LiDAR
7.10.LiDAR scanning categories
7.11.Summary of lidars with various beam steering technologies
7.12.Comparison of common beam steering options
7.13.Overview of beam steering technologies
7.14.Point cloud
7.15.Lidar signal applications
7.16.3D point cloud modelling
7.17.LiDAR challenges
7.18.Poor weather performance: Challenges & solutions
7.19.Early possible adoption of Lidar
7.20.Velodyne lidar portfolios
7.21.Valeo SCALA
7.22.Livox: Risley prisms
7.23.Automotive lidar players by technology
8.ENABLING TECHNOLOGIES: RADAR
8.1.Radar in Autonomous Trucks
8.2.Typical Sensor Suite for Autonomous Cars
8.3.Radar Has a Key Place in Automotive Sensors
8.4.The Need for and Emergence of Imaging Radar
8.5.4D Radars and Imaging Radars
8.6.Radar Trends: Volume and Footprint
8.7.Radar Trends: Packaging and Performance
8.8.Radar Trends: Increasing Range
8.9.Radar Trends: Field of View
8.10.Radar Trilemma
8.11.Radar Anatomy
8.12.Radar Key Components
8.13.Primary Radar Components - The Antenna
8.14.Primary Radar Components - the RF Transceiver
8.15.Primary Radar Components - MCU
8.16.Automotive Radars: Frequency Trends
8.17.Trends in Transceivers
8.18.Two Approaches to Larger Channel Counts
8.19.Semiconductor Technology Trends in Radar
8.20.Funding for Radar Start-ups
8.21.Future Radar Packaging Choices
8.22.Leading players - tier 1 suppliers
8.23.Transceiver suppliers
8.24.Supply chain
8.25.Example products from a tier 1 - Continental
8.26.Example products from a tier 1 - Bosch
8.27.Example of radar start-up - Arbe
8.28.Arbe and its Investors
8.29.Example of radar start-up - Zadar
9.FORECASTS
9.1.Notes on the forecasts chapter
9.2.Method
9.3.Heavy-Duty Trucking Unit Sales 2023-2044
9.4.Autonomous truck pricing 2018-2044
9.5.Heavy-Duty Trucking Revenue 2023-2044
9.6.Miles and service revenue for autonomous trucks 2023-2044
9.7.Autonomous truck powertrains 2023-2044
9.8.Sensors for autonomous trucks 2021-2044
10.COMPANY PROFILES
10.1.Aurora
10.2.Bosch
10.3.Continental AG
10.4.DeepWay
10.5.Einride: Automating Logistics
10.6.Hyundai
10.7.Inceptio
10.8.Innoviz
10.9.Innoviz
10.10.Kodiak Robotics: Autonomous Trucking Start-up
10.11.Mobileye: ADAS & Autonomy Computation
10.12.Ouster
10.13.plus.ai
10.14.Pony.ai
10.15.Terraline
10.16.Tesla Motors
10.17.Torc: An Autonomous Technology Company in Roboshuttles and Trucks
10.18.Trunk Tech
10.19.TuSimple
10.20.Valeo
10.21.Velodyne LIDAR
10.22.Volvo Trucks - Truck Electrification
10.23.Waymo (2023)
10.24.Waymo (2024)
 

価格および注文方法

自動運転トラック 2024-2044年:技術、トレンド、予測

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
電子版_PDF(ユーザー 1-5名)
¥990,000
電子版_PDF(ユーザー 6-10名)
¥1,406,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,140,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。
世界の自動運転大型トラックの売上収益は2044年までに1200億ドルを超える規模になる見込み

レポート概要

スライド 248
企業数 24
フォーキャスト 2044
 

コンテンツのプレビュー

pdf Document EOY 2024 Webinar Slides
pdf Document Webinar Slides
pdf Document Sample pages
 

Customer Testimonial

quote graphic
"IDTechEx consistently provides well-structured and comprehensive research reports, offering a clear and holistic view of key trends... It's my first go-to platform for quickly exploring new topics and staying updated on industry advancements."
Head of Foresight - Future Technologies
Freudenberg Technology Innovation SE & Co. KG
 
 
 
ISBN: 9781835700457

Subscription Enquiry