AI活用バッテリー技術 2025-2035年:技術、イノベーション、機会

バッテリーのライフサイクル全体にわたる5つのAI活用分野の10年間予測。技術のベンチマーク評価、データに基づく市場予測、20社以上の企業概要も掲載。

製品情報 概要 目次 価格 Related Content
本調査レポートでは、バッテリー業界の5つのAI活用分野に関する重要な洞察を提供し、技術、サプライチェーンの混乱、プレーヤーのイノベーションについても解説しています。定量分析・定性分析の両方に基づいて今後10年間の市場予測を立てています。本レポートは、バッテリー業界での機械学習活用を最も包括的にまとめたものであり、バッテリー開発、製造、利用方法に大変革をもたらし、さらなる加速を促す可能性を明らかにしています。
「AI活用バッテリー技術 2025-2035年」が対象とする主なコンテンツ 
(詳細は目次のページでご確認ください)
● 全体概要
● 機械学習の手法:概要
● 材料探索
● バッテリーセルのテスト・モデリング
● バッテリーセルの組立・製造
● バッテリーマネジメントシステム分析
● セカンドライフバッテリー評価
● 予測
● 企業概要
● 付録A
 
「AI活用バッテリー技術 2025-2035年」は以下の情報を提供します
各活用分野で利用されている技術・手法の批評:
  • 機械学習と人工知能の概要
  • 既存手法と欠点の評価
  • AI活用による価値創出の可能性を解説
  • AI活用事例のベンチマーク評価
各活用分野の市場評価:
  • 各活用分野(材料探索、バッテリーセルテスト、製造、稼働中製品の診断、セカンドライフバッテリー評価)市場を定量的・定性的に分析
  • エネルギー密度課題やネットゼロの必要性など、バッテリー業界が直面している問題のレビュー
  • AI理論的価値提案と現実的価値提案の考察(現行との比較)
  • バッテリー業界プレーヤー各社のビジネスモデルと収益源解説
市場とプレーヤーの徹底分析:
  • プレーヤー技術とビジネスモデル批評
  • 欧州、北米、東アジア中心の成長要因分析
  • 3セクターの市場予測と他セクターに関する定性的予測(手法・範囲の解説)
 
This report provides key insights into five different application areas for artificial intelligence in the battery industry, including discussion of technologies, supply-chain disruption and player innovations. Market forecasts cover the next decade with both quantitative and qualitative analysis. It is the most comprehensive overview for machine learning applications in the battery industry, and reveals the potential for significant disruption and acceleration of battery development, manufacturing and usage.
 
AI growth drivers
The need for net-zero has placed increasing pressure for electrification world-wide, with battery demand skyrocketing as a result. As the electric vehicle (EV) and battery energy storage system (BESS) industries grow, requirements for the batteries that power them become more demanding. Energy density is the most important factor, but cost and critical material proportions are also a major consideration. Faster battery development is needed to enable suitable batteries, as well as allow for more efficient management, manufacturing and recycling methods. Artificial intelligence (AI) will be a crucial part of the solution.
 
 
Visualization of AI usage throughout the battery lifecycle. Source: IDTechEx
 
In Europe, the desire for better sustainability and safety for large battery deployments has already led to regulatory support, including the planned Battery Passport initiative, whereby manufacturers and end-users will be required to track cell data from production to end-of-life. This has already resulted in growth of AI battery analytics, for both diagnostics and second-life assessment.
 
Meanwhile, for North America, the need for faster cell development and materials discovery will lead to uptake of materials informatics platforms and AI-assisted cell testing methods, while in East Asia, manufacturing- and development-related applications will fuel demand for AI-assisted battery technology. In the report, IDTechEx discusses the details of AI usage throughout the battery industry and across these three regions.
 
Emerging markets analyzed through the lens of experience
IDTechEx has provided the most comprehensive overview of AI technologies used throughout the battery life-cycle and supply chain, providing an overarching view of machine-learning methods generally as well as trends and growth drivers.
 
IDTechEx has gathered expertise in many sectors of the battery industry, through analysis of emerging and incumbent technologies, as well as in the two major application areas for AI in batteries: electric vehicles (EVs) and energy storage systems (ESS). As such, it is well positioned to provide critical analysis on disruptions to the battery supply chain, as well as discuss the maturity and value provided by different AI use-cases.
 
An overview of content
The report provides market analysis and technology assessment for artificial intelligence (AI) employed throughout the battery industry, looking at five distinct application areas. This includes:
A review of technologies and techniques used in different application areas:
  • Overview of machine learning and artificial intelligence
  • Evaluation of incumbent techniques and their disadvantages
  • Discussion of how value can be generated through use of AI
  • Benchmarking of AI use-cases
 
Market assessment for each application area:
  • Mix of quantitative and qualitative analysis of markets for each application area (materials discovery, cell testing, manufacturing, in-life diagnostics and second-life assessment).
  • Review of the problems facing the battery industry, including energy-density challenges and the need for net zero
  • Examination of theoretical and practical value propositions for AI, compared with the incumbent
  • Discussion of business models and revenue streams for different players in the battery industry
 
Market and player analysis throughout:
  • Review of player technology and business models
  • Analysis of growth drivers, especially in Europe, North America and East Asia
  • Market forecasts over three sectors and qualitative predictions for the rest, with a discussion of methodology and scope for each.
Report MetricsDetails
Forecast Period2025 - 2035
Forecast UnitsGlobal capacity (GWh), Market value (US$ millions)
Regions CoveredWorldwide
Segments CoveredMaterials informatics for batteries, AI-assisted cell testing, smart battery manufacturing, cloud-based diagnostics, on-edge diagnostics, second-life assessment
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
1.EXECUTIVE SUMMARY
1.1.The scope of this report
1.2.Who should read this report?
1.3.Research methodology
1.4.Clarifying terms: machine learning vs artificial intelligence
1.5.Inefficiencies of overuse
1.6.Under- and over-fitting
1.7.Challenges facing the rechargeable battery industry
1.8.How AI can be applied throughout the battery lifecycle
1.9.AI disruptions to the battery supply chain
1.10.Use-case benchmarking
1.11.Use-case maturity comparison
1.12.AI in batteries for EVs
1.13.AI in batteries for BESS
1.14.Interest by region
1.15.Scope of forecasts
1.16.Methodologies
1.17.Diagnostics by capacity served
1.18.Diagnostics by market value
1.19.On-edge AI: diagnostics
1.20.On-edge AI: performance enhancement
1.21.Cell testing by market value
1.22.Second-life assessment by market value
1.23.AI will see significant usage throughout the battery industry
2.MACHINE LEARNING APPROACHES: AN OVERVIEW
2.1.An introduction to AI - shifting goalposts
2.2.Machine learning as a subset of artificial intelligence
2.3.Machine learning approaches
2.4.The importance of data - quality and dimensionality
2.5.Standardizing data structures
2.6.Supervised learning
2.7.Unsupervised learning
2.8.Problem classes in supervised and unsupervised learning
2.9.Reinforcement learning
2.10.Semi-supervised and active learning
2.11.The ɛ parameter: exploitation vs. exploration
2.12.Neural networks - an introduction
2.13.An artificial neuron in the training process
2.14.Types of neural network
2.15.Support vector machines
2.16.Decision tree methods
2.17.k-nearest neighbor (kNN)
2.18.k-means clustering
2.19.Principal component analysis
3.MATERIAL DISCOVERY
3.1.Overview
3.1.1.Material discovery in batteries - the attraction of AI
3.1.2.Traditional material discovery and DFT
3.1.3.An introduction to Materials Informatics
3.1.4.Property prediction and material grouping
3.1.5.Datasets and descriptors
3.1.6.The golden grail - inverting the process
3.1.7.Informed selection vs. novel material formulation
3.1.8.Virtual screening
3.1.9.De novo design
3.1.10.Integration of LLM interface
3.1.11.Electrodes
3.1.12.Electrolytes
3.1.13.Problem and algorithm classes
3.2.Players in materials informatics for batteries
3.2.1.BIG-MAP
3.2.2.Microsoft Quantum - Azure Open AI
3.2.3.Umicore
3.2.4.Wildcat Discovery Technologies
3.2.5.Schrödinger - an overview
3.2.6.Schrödinger technical details
3.2.7.Eonix Energy
3.2.8.Citrine Informatics
3.2.9.Morrow Batteries
3.2.10.Chemix
3.2.11.Aionics
3.2.12.SES AI
3.2.13.SES AI batteries
3.3.Business analysis for AI in battery material discovery
3.3.1.Business models/partnerships
3.3.2.Existing client-supplier relationships
3.3.3.Differentiation
3.3.4.Challenges
3.3.5.Materials informatics will see increasing use in the battery industry over the next decade
4.CELL TESTING AND MODELLING
4.1.Overview
4.1.1.Traditional cell testing - shortcomings and challenges
4.1.2.AI for high-throughput automated testing
4.1.3.Data forms for cell modelling
4.1.4.AI for design of experiment (DoE) and anomalous data identification
4.1.5.AI for lifetime modelling
4.1.6.AI for degradation modelling
4.1.7.AI for temperature and pressure simulation
4.1.8.Data driven cell architecture optimization
4.1.9.Algorithmic approaches for different testing modes
4.2.Players in AI for cell testing
4.2.1.Stanford, MIT and Toyota Research Institute
4.2.2.StoreDot - a data-first approach
4.2.3.StoreDot's batteries
4.2.4.Safion
4.2.5.TWAICE
4.2.6.Oorja Energy
4.2.7.Addionics
4.2.8.Monolith AI
4.2.9.Speedgoat
4.2.10.DNV Energy Systems via Veracity
4.2.11.NOVONIX and SandboxAQ
4.2.12.Cell testing players summary
4.3.Business analysis for AI in cell testing
4.3.1.Typical business models
4.3.2.Differentiation
4.3.3.Challenges
4.3.4.AI is well-placed to revolutionize the cell testing process for battery development, but it will take time
5.CELL ASSEMBLY AND MANUFACTURING
5.1.Overview
5.1.1.Overview of traditional manufacturing process
5.1.2.Data quality challenges
5.1.3.Data acquisition challenges in industrial settings
5.1.4.AI for defect detection and quality control
5.1.5.AI for manufacturing process efficiency
5.1.6.Algorithmic approaches in manufacturing and cell assembly
5.1.7.Digital twins
5.1.8.FAT/SAT
5.2.Smart battery manufacturing players
5.2.1.CATL - smart factories
5.2.2.CATL - manufacturing process optimization
5.2.3.Siemens Xcelerator
5.2.4.Samsung Robotic Laboratory: ASTRAL
5.2.5.Voltaiq
5.2.6.BMW Group and University of Zagreb
5.2.7.EthonAI
5.2.8.Elisa IndustrIQ
5.2.9.Smart battery manufacturing players summary
5.3.Business analysis for smart battery manufacturing
5.3.1.Types of smart battery manufacturing players
5.3.2.Challenges
5.3.3.Smart factories could become standard for larger players, but startups will struggle to adopt
6.BATTERY MANAGEMENT SYSTEM ANALYTICS
6.1.Overview
6.1.1.Battery management in mobility and ESS - the need for accurate diagnostics
6.1.2.Management of multi-cell battery packs - a basic example
6.1.3.The purpose of a BMS
6.1.4.The data pipeline - from BMS to AI
6.1.5.Data structures and forms for diagnostics
6.1.6.Fault detection and analysis
6.1.7.SoH and SoC determination for lifetime optimization
6.1.8.The genesis of 'prescriptive' AI
6.1.9.Algorithmic approaches to battery system management
6.1.10.The Battery Passport
6.2.Players in AI for battery diagnostics and management
6.2.1.ACCURE Battery Intelligence
6.2.2.TWAICE
6.2.3.BattGenie
6.2.4.volytica diagnostics
6.2.5.On-edge AI
6.2.6.Samsung: Battery AI in S25
6.2.7.Eatron and Syntient
6.2.8.LG Energy Solution and Qualcomm
6.2.9.Tesla BMS: optimization over a journey
6.2.10.Cell diagnostics players summary
6.3.Business analysis for AI-assisted battery diagnostics and management
6.3.1.Business models
6.3.2.Differentiation
6.3.3.Challenges
6.3.4.Data-focused battery analytics will take off in Europe and see growth in the wider mobility industry
7.SECOND LIFE ASSESSMENT
7.1.Overview
7.1.1.Second-life batteries: an overview
7.1.2.Determining the second-life stream
7.1.3.Safety concerns and regulations
7.1.4.The battery passport
7.1.5.The use of AI
7.1.6.Algorithmic approaches and data inputs/outputs
7.2.Players in AI for second-life battery assessment
7.2.1.ReJoule
7.2.2.volytica diagnostics and Cling Systems
7.2.3.NOVUM
7.2.4.DellCon
7.2.5.Second-life assessment player summary
7.3.Business analysis for AI-assisted second-life assessment
7.3.1.Revenue streams - somewhat ambiguous
7.3.2.Types of players
7.3.3.Differentiation
7.3.4.Challenges
7.3.5.AI for second-life assessment in batteries will become the norm in Europe
8.FORECASTS
8.1.Diagnostics by capacity served
8.2.Diagnostics by market value
8.3.Cell testing by market value
8.4.Second-life assessment by market value
9.COMPANY PROFILES
9.1.ACCURE
9.2.Addionics
9.3.Aionics Inc.
9.4.BattGenie Inc.
9.5.Chemix
9.6.Eatron Technologies
9.7.Elisa IndustrIQ
9.8.Eonix Energy
9.9.EthonAI
9.10.Monolith AI
9.11.Oorja Energy
9.12.ReJoule
9.13.Safion GmbH
9.14.Schrödinger Update
9.15.SES AI
9.16.Silver Power Systems
9.17.StoreDot
9.18.TWAICE
9.19.Voltaiq
9.20.volytica diagnostics
9.21.Wildcat Discovery Technologies
10.APPENDIX A: DATA CENTRES DRIVING BATTERY DEMAND
10.1.A note on battery demand
 

価格および注文方法

AI活用バッテリー技術 2025-2035年:技術、イノベーション、機会

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
電子版_PDF(ユーザー 1-5名)
¥990,000
電子版_PDF(ユーザー 6-10名)
¥1,406,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,140,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。
クラウド型AIバッテリー診断市場は今後10年で年平均23.4%の成長率を達成する見込み

レポート概要

スライド 190
企業数 21
フォーキャスト 2035
発行日 Nov 2024
 

コンテンツのプレビュー

pdf Document Webinar Slides
pdf Document Sample pages
 

Customer Testimonial

quote graphic
"The resources provided by IDTechEx, such as their insightful reports and analysis, engaging webinars, and knowledgeable analysts, serve as valuable tools and information sources... Their expertise allows us to make data-driven, strategic decisions and ensures we remain aligned with the latest trends and opportunities in the market."
Global Head of Product Management and Marketing
Marquardt GmbH
 
 
 
ISBN: 9781835700761

Subscription Enquiry