車載用レーダー市場は2041年には年間販売台数が5億台に達する見込み

車載用レーダー市場 2025-2045年:ロボタクシーと自動運転車

自動運転車・ロボタクシー用レーダー、長距離用レーダー、短距離用レーダー、レーダーコクーニング、4Dイメージングレーダー、マルチチャンネルレーダー、レーダー向け半導体技術、導波管アンテナ、車載用レーダーの予測


製品情報 概要 目次 価格 Related Content
レーダーは25年にわたり自動車市場での存在感を高めてきました。2024年の車載用レーダーの出荷台数は1億4000万台を突破する見込みですが、成長の余地はまだあります。本調査レポートでは、新しい安全基準、最新ADAS機能、自動運転車推進の動きなど、自動車市場のレーダーに影響を与える主なトレンドと成長要因を網羅しています。また、4Dイメージングレーダー、より高度な半導体技術への移行、分散型レーダーシステム、新しいアンテナ技術など、レーダー技術の進化についても取り上げています。レーダーの成長と技術進化は、IDTechExの20年間の市場予測に反映されており、販売台数、収益、仮想チャンネル数別レーダー、レーダートランシーバー半導体技術、レーダーの周波数帯、車載用レーダー向け低損失材料をカバーしています。
「車載用レーダー市場 2025-2045年」が対象とする主なコンテンツ 
(詳細は目次のページでご確認ください)
● 全体概要
□ 主な調査結果とナラティブレポート
□ 重要予測(2020-2045年)
  • SAEレベル別販売台数
  • 地域別(米国、中国、EU + 英国 + EFTA、日本、その他の地域)販売台数
  • SAEレベル別車載用レーダーの市場収益
● はじめに
□ レーダー構造
□ 車載レーダー役割と使用理由
□ レーダー導入推進要因
  • 安全性
  • 自動運転
● 一般消費者向け自動車の規制と安全性の推進要因
□ 自動運転関連規制
□ 安全性能義務化によるレーダー必要性
□ NCAP試験で推奨されるレーダー搭載
● 一般消費者向け自動車と車載用レーダー
□ レーダー対応ADAS機能の搭載状況
□ 地域別自動車の搭載レーダー数
□ 一部ADAS機能のレーダーに代わる選択肢
□ レベル2+とレベル3市販車例
● ロボタクシー車載用レーダー
□ ロボタクシー市場リーディング企業
□ センサースイート例
□ 業界全体のレーダー利用状況分析
● レーダー製品とトレンド:ティア1、スタートアップ企業、ティア2
□ 大手ティア1の主要製品
□ レーダースタートアップ企業の主な新技術
□ レーダー性能のトレンド
□ 4Dイメージングレーダー
● 車載用レーダー要素技術
□ 各項目トレンド
  • 波形
  • チャンネル数
  • 周波数帯
  • アンテナ、レドーム、RFボード向け低損失材料
  • アンテナ設計と導波管
● ティア1市場シェア
● 予測(2020-2045年)
□ SAEレベル別自動車市場予測
□ SAEレベル別レーダー販売台数
□ 地域別(米国、中国、EU + 英国 + EFTA、日本、その他の地域)レーダー販売台数
□ SAEレベル別レーダー売上収益
□ SRR(短距離用レーダー)とLRR(長距離用レーダー)の地域別(米国、中国、EU + 英国 + EFTA、日本、その他の地域)売上
□ レーダー仮想チャンネル数別売上
□ レーダー売上の周波数帯(24GHz、77Ghz)別比率
□ レーダー向け低損失材料(単位:100万平方メートル)
  • レドーム
  • RFボード
  • アンテナ
 
「車載用レーダー市場 2025-2045年」は以下の情報を提供します
● 車載用レーダー導入拡大の推進要因
  • ADAS技術導入拡大
  • より高度なADAS技術登場
  • 先進自動運転技術
  • 安全基準引き上げ
●自家用車向け製品、先進ロボットタクシー、自律型MaaS(モビリティ・アズ・ア・サービス)のレーダー要件
●レーダー性能トレンド
●性能向上を促す技術トレンドと先進技術
●4Dイメージングレーダー(技術解説と主要製品のベンチマーク評価)
●レーダー技術の変化
  • 周波数帯
  • 波形
  • レドーム
  • アンテナ
  • 半導体
●自動車市場の特性評価、地域別・レーダー種類別大手ティア1の分析、大手自動車メーカーのレーダー選定
今後20年の市場予測とトレンド解説
● 自動車市場での販売台数
● 車載用レーダー販売台数と収益(単位:10億ドル)
● レーダー向け材料需要(単位:100万平方メートル)
 
IDTechEx's report, Automotive Radar Market 2025-2045: Robotaxis & Autonomous Cars, predicts the automotive radar market will hit 500 million annual sales in 2041. The market share today is dominated by the big tier-one companies like Continental, Bosch, Denso, Aptiv, Hella, ZF, and more, but exciting new technologies are coming to market from startups like Arbe, Uhnder, and Zendar. What's more, there are still new startups being founded in this market, with Waveye, Altos, and Xavveo all coming into existence in the last couple of years. The market is well established with commodity short-range and long-range radar, 4D imaging radar is now emerging and seeing uptake from early adopters, but there are technologies on the horizon that could completely revolutionize automotive radar.
 
 
Junction pedestrian automatic emergency braking is one example of a safety driven application that will drive further adoption of short-range radars.
 
More than 140 million sensors in 2024, but still room to grow
Automotive radar is now a well-established market. Since the mid-2010s, it has become globally common for cars to have radar-enabled features such as automatic emergency braking, adaptive cruise control, and blind spot detection as at least a specifiable option. Now, in the mid-2020s, many vehicles are sold with these features as standard. In particular, automatic emergency braking is widely included as standard on new cars in a growing and important effort to improve road safety, especially for pedestrians and other vulnerable road users.
 
In 2024, IDTechEx estimates that 1.53 radars will be shipped for each car, totaling more than 140 million units. However, there is still lots of room for growth. This IDTechEx report finds that approximately half of radar sales are long-range radars for forward-facing applications, while the other half is short-range radars for applications like blind spot detection and warning. However, a single blind-spot system uses two radars, meaning blind-spot detection is about half as common as adaptive cruise control and automatic emergency braking. Exact deployment numbers of these features captured over multiple sales years can be found in the report with regional granularity.
 
Pushes for additional and evermore sophisticated safety features in vehicles will be a key driver for short-range radars. Europe is mandating that some heavier vehicle categories have blind spot warning systems from 2024. In the future, it is likely that blind spot detection will be enforced for passenger vehicles, as well as forward cross-traffic and junction emergency braking systems, which require two additional front radars. This means side radar adoption has the potential to grow fourfold over the next 20 years. While forward-facing radars are approaching saturation levels, there is still a lot of room for improving performance.
 
4D Imaging Radars Are Coming to Market
For a long time, radar's performance was perfectly adequate for its intended use case, i.e. calculating the distance to the car ahead. But the requirements from the industry are growing, with high-resolution radars being demanded. There are two key drivers for this: safety and convenience. Protecting vulnerable road users is a key driver for new technologies in the automotive industry. Radar has enormous potential here as it can "see" in conditions where cameras and LiDARs are rendered redundant. However, radars of old don't have the imaging performance to confidently separate a human that is standing next to a car from the car itself. This is a key task when trying to accomplish perfect automatic emergency braking performance in all conditions. Additionally, autonomous driving is becoming a reality, but real-world examples today have limitations. With better performance, radar can help overcome those limitations.
 
 
4D imaging radar can improve the performance of radar such that they can understand more complex situations, such as separating the car from the bridge in a detection. Expanding on this, next generation radars will detect a person next to the car under the bridge.
 
 
4D imaging radars are the emerging next generation, with stacked antenna arrays and hundreds, even thousands of virtual channels. Like pixels in a camera, more virtual channels generally mean better performance, but it isn't the only factor. This report explains what else it takes to make a 4D imaging radar, who has the most exciting and most market-ready technologies, and where the limitations remain. One key limitation still remaining, and with no simple solution, is the package size of radars.
 
Distributed radar could be the next step
When it comes to imaging, bigger is better. This is why camera phones haven't replaced large DSLR cameras and why the James Webb telescope is over 20ft wide. The same applies to radar; a bigger automotive radar would give better resolution. If a radar was made with an antenna array 2m wide, then its resolution would be similar to a LiDAR. However, the modern flagship radars from leading tier-one suppliers are already hitting the upper limit of what OEMs can integrate, and they are only 10cm by 15cm. The solution that some are pioneering is distributed radar. Putting parts of the radar across the car and creating a much larger virtual antenna. This approach has the potential to return sub-0.1° resolution with all the benefits of imaging with radar, such as distancing, velocity measuring, and its robustness to adverse weather and lighting.
 
This report and the included company profiles cover a handful of companies working on distributed radar concepts. One is getting close to market deployment, while another has a revolutionary, game-changing proposition for automotive radar, find out which in the report.
 
This IDTechEx report offers complete coverage of the automotive radar space. It covers the safety and convenience factors driving radar, the areas where the strongest growth is likely to be found, and all the major startup technologies that will define the next generations of radar. All these trends are then captured in IDTechEx 20-year granular forecasts. This report is a complete guide to automotive radar now and in the future.
 
Key aspects
A complete and comprehensive view of the automotive radar market can be found in this report. Key aspects of the automotive radar industry covered include:
 
• Forces that are driving further adoption of automotive radar, such as
o Increased adoption of ADAS technologies
o Emergence of more sophisticated ADAS technologies
o Emerging autonomous driving technologies.
o Increasing safety standards
• Radar requirements for private automotive products, emerging robotaxis, and autonomous mobility as a service.
• Performance trends within radar
• Technology trends driving performance improvements and emerging technologies
• 4D imaging radars, technologies explained and key products benchmarked
• Changes to radar technologies;
o Frequencies
o Waveforms
o Radomes
o Antennas
o Semiconductors
• Automotive market characterization and analysis of leading tier-one companies by region, for different radar types, and radar choices of leading OEMs
 
The forecast chapter then explains how trends within the automotive radar market will play out over the next 20 years:
• Automotive market unit sales
• Automotive radar unit sales and revenue (US$ billion)
• Material demand for radar (million m^2)
Report MetricsDetails
Historic Data2020 - 2023
CAGRThe automotive radar market will grow to US$16.3 billion in 2034, representing a 4.8% 10-year CAGR.
Forecast Period2024 - 2045
Forecast Unitsvolume (unit sales), revenue (million m^2)US$ billion), material
Regions CoveredUnited States, China, Europe, Japan, Worldwide
Segments CoveredAutomotive radar, short-range radars, long-range radars, 4D imaging radars, semiconductor technologies (SiGe, Si CMOS, FD-SOI, FinFET, radar operating frequency (24GHz, vs 77GHz).
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Three Key Takeaways for the Automotive Radar Market
1.2.Introduction to Automotive Radar
1.3.Radar is a Key Part of Modern ADAS Features
1.4.The Key Radar-Enabled ADAS Features Are Ubiquitously Available in the Market
1.5.Adoption of Radar-Enabled ADAS Features in 2020, 2022, and 2023
1.6.ADAS Applications Enabled by Front Radar
1.7.ADAS Applications Enabled by Side Radar
1.8.New Radar-Enabled ADAS Features
1.9.Some OEMs are Finding Alternatives to Radar
1.10.Tier-One Suppliers Also Have Radar-Free Alternatives for Key ADAS Features
1.11.Autonomous Vehicles Will Also Drive Radar Growth
1.12.Highly Autonomous Vehicles and Robotaxis Demand Many Radars per Vehicle
1.13.The Key Tier-One, Startup, and Tier-Two Radar Players
1.14.Best Funded Radar Start-Ups and Ones to Watch
1.15.Nearly US$1 Billion Invested into Automotive Radar Startups
1.16.Startups and Tier-Ones are Working on 4D Imaging Radars
1.17.The Radar Transceiver is One Key Area Where Innovation Is Happening
1.18.The Adoption of More Advanced Semiconductor Technology is a Key Part of the Advancements
1.19.Examples of 4D Imaging Radar Already on the Market
1.20.Known Deployments of 4D Imaging Radar in Consumer Vehicles
1.21.Automotive Radar Market Share and the Leading Tier Ones
1.22.The Addressable Market - Automotive Market by SAE Level 2020-2045
1.23.Radar's Growth will be Driven by Autonomy and Safety - Units Forecast by SAE Level 2020-20245
1.24.Radar Unit Sales in Key Regions Forecast - 2020-2045
1.25.Automotive Radar Market Revenue to Reach Nearly US$20 in 20244
2.INTRODUCTION
2.1.Radar - Radio Detection and Ranging
2.2.Typical Sensor Suite for Autonomous Cars
2.3.Radar
2.4.Sensors and their Purpose
2.5.Where does Radar Sit in the Sensor Trio?
2.6.ADAS Adoption by Region in 2023
2.7.SAE Levels of Automation in Cars
2.8.Functions of Autonomous Driving at Different Levels
2.9.Level 2, Level 2+, and Level 3
2.10.Summary of the Privately Owned Car Market - Level 3 is Happening Slowly, Level 2+ is Happening Now
2.11.Level 3 is Harder
2.12.NHTSA AEB 2029 Update Creating a Boon for Radar
2.13.AEB Required for Top NCAP Scores
2.14.Typical Sensor Suites and the Purpose of Each Sensor
2.15.Quantity of Sensors per Car - Level 2
2.16.Sensors per Vehicle: Level 3 and Above
2.17.Radar Anatomy
2.18.Radar Key Components
2.19.Primary Radar Components - The Antenna
2.20.Primary Radar Components - the RF Transceiver
2.21.Primary Radar Components - MCU
3.REGULATIONS AND SAFETY DRIVERS FOR RADAR IN CONSUMER CARS
3.1.How Regulation Drives Adoption of Radar
3.2.Regulations on Level 3 and Level 2+ Deployment
3.2.1.Privately owned Autonomous Vehicles
3.2.2.Level 2+ could be a long-term middle-ground
3.2.3.Legislation and Autonomy
3.2.4.Overview of where autonomous cars are legal
3.2.5.Level 2+ starting to grow in Europe
3.2.6.Level 2+ rules and deployment in the US
3.2.7.Level 2+ deployment and level 3 testing in China
3.2.8.Level 3 roll out in Europe and Germany
3.2.9.UN Regulation No.157 2023 Update and Implementation
3.2.10.Level 3 roll out in Other European Countries
3.2.11.Level 3 Legislation in the US
3.2.12.Mercedes S-Class first level 3 car in US
3.2.13.Level 3, Legislation, China
3.2.14.Private autonomous vehicles in Japan
3.3.Enforcing Radar Adoption Through Regulation
3.3.1.Overview of Safety and Luxury ADAS Features in Passenger Vehicles
3.3.2.AEB Improving Vehicle Safety
3.3.3.EU Mandating Certain ADAS Features Since July 2022
3.3.4.NHTSA AEB 2029 Update Creating a Boon for Radar
3.3.5.Regional NCAP Standards
3.3.6.Euro NCAP AEB Testing Scenarios
3.3.7.IIHS Pedestrian Front Crash Prevention
3.3.8.NCAP and Radars
3.3.9.Euro NCAP 2030 Vision and Impact on Radar Requirements
3.3.10.OEMs That Cover NCAP Scenarios in their Marketing
3.3.11.Tier-One Supplier NCAP Focused ADAS Products
4.CONSUMER CARS AND AUTOMOTIVE RADAR
4.1.Market Adoption of Key ADAS Features
4.1.1.ADAS Features and Radar
4.1.2.IDTechEx's ADAS Feature Database
4.1.3.ADAS Adoption by Region in 2023
4.1.4.Radar-Enabled ADAS Feature Deployment in the US
4.1.5.Radar-Enabled ADAS Feature Deployment in the China
4.1.6.Radar-Enabled ADAS Feature Deployment in EU + UK + EFTA
4.1.7.ADAS Feature Deployment in Japan
4.1.8.Growth in Adoption of Radar-Enabled ADAS Features
4.1.9.New Radar-Enabled ADAS Features
4.2.Some Automakers Finding Alternatives to Radar
4.2.1.Why Ditch Radar?
4.2.2.Tier-One Suppliers of Radar Free ADAS
4.2.3.Tesla and Subaru
4.2.4.Tesla Re-Introducing Radar
4.2.5.Honda Joins Tesla and Subaru with Radar-Free ACC in 2023
4.2.6.Fiat and Mazda previously used LiDAR for City AEB
4.2.7.Dacia and Peugeot using Ultrasonics for Blind Spot Detection
4.2.8.Nodar - A Camera-Based Alternative With Better Ranging
4.3.Examples of Level 2+ and Level 3 Vehicles, Plus Future Market Technologies
4.3.1.Higher Levels of Autonomy and Radar
4.3.2.Level 3 - Honda
4.3.3.Honda Sensing 360+ sensor suite
4.3.4.Mercedes S-Class and EQS
4.3.5.Mercedes S-class - Sensor Suite
4.3.6.BMW level 3 and level 2+
4.3.7.BMW 7 Series and 5 Series Sensors
4.3.8.Tesla
4.3.9.Tesla's Hardware 4.0
4.3.10.GM's Super Cruise
4.3.11.Vehicles with GM Super Cruise
4.3.12.Ford BlueCruise
4.3.13.Other US Level 2+ Systems
4.3.14.Availability of Level 2+ Systems is Growing
4.3.15.Chinese Stuck at Level 2 for Now
4.3.16.Chinese Sensor Suite Example - Li Auto L6
4.3.17.Xpeng G9
4.3.18.Arcfox Alpha S 2024
4.3.19.Zeekr 001
4.3.20.NIO ET7
4.3.21.Leaders in the Market So Far
4.3.22.Future Level 2+ and Level 3 Systems - Mobileye
4.3.23.Future Level 2+ and Level 3 Systems - Qualcomm
5.AUTOMOTIVE RADAR FOR ROBOTAXIS
5.1.Robotaxis and Radar
5.2.State of development in 2024
5.3.The big movers in 2024
5.4.Waymo
5.5.Waymo Sensor Suite
5.6.Cruise
5.7.Cruise Sensor Suite
5.8.Zoox
5.9.Zoox Sensor Suite
5.10.AutoX
5.11.AutoX Sensor Suite
5.12.Baidu and Apollo
5.13.Baidu's Ground Up Robotaxi
5.14.Pony
5.15.Pony sensor suite
5.16.WeRide
5.17.Robotaxi Sensor Suite Analysis (1)
5.18.Robotaxi Sensor Suite Analysis (2)
6.RADAR PRODUCTS AND TRENDS: TIER-ONES, STARTUPS, AND TIER-TWOS
6.1.Introduction
6.1.1.Company Mapping
6.2.Tier One Radars
6.2.1.Continental's Flagship Radar and Opinion on High Channel Counts
6.2.2.Continental's Radar Product Portfolio
6.2.3.Bosch Flagship Radar and Pathway to High Channel Counts
6.2.4.Bosch's Radar Product Portfolio
6.2.5.Denso's Radar Product Portfolio
6.2.6.Aptiv's Seventh Generation Front and Side Radars
6.2.7.Aptiv's Radar Product Portfolio
6.2.8.Hella's Product Portfolio
6.2.9.ZF's Imaging Radar and Radar Product Portfolio
6.2.10.Valeo and Veoneer
6.2.11.Valeo's and Veoneer's Radar Product Portfolios
6.2.12.Magna
6.2.13.HiRain and Weifu
6.2.14.Others
6.3.Start-up Radars
6.3.1.Introduction
6.3.2.Table of Radar Start-ups
6.3.3.Best Funded Radar Start-Ups and Ones to Watch
6.3.4.Radar Investment over Time
6.3.5.Arbe
6.3.6.Uhnder
6.3.7.Oculii and Ambarella
6.3.8.Mobileye
6.3.9.Zendar
6.3.10.Xavveo - Radar Using Silicon Photonics
6.4.Tier-Two Products
6.4.1.Introduction to Transceivers
6.4.2.Reestablishment of Distributed Functionality
6.4.3.NXP
6.4.4.Texas Instruments
6.4.5.Infineon
6.4.6.Others
6.4.7.Transceiver Technology Trends
6.5.Radar Performance Trends
6.5.1.IDTechEx Radar Trends Primary Research Method
6.5.2.Radar Trends: Volume and Footprint
6.5.3.Radar Trends: Packaging and Performance
6.5.4.Radar Trends: Increasing Range
6.5.5.Radar Trends: Field of View
6.5.6.Trading FOV with Range
6.5.7.Radar Trends: Angular Resolution (lower is better)
6.5.8.Radar Trends: Virtual Channel Count
6.5.9.Radar Trends: Virtual Channels and Resolution
6.5.10.Radar's Limited Resolution
6.5.11.Approaches to Larger Channel Counts: Cascading
6.5.12.Approaches to Larger Channel Counts: Large Radar on Chip
6.5.13.Approaches to Larger Channel Counts: Discretization of Functions
6.5.14.Emerging Interest in Dynamic Range
6.5.15.Packaging and Integration Trends
6.6.Routes to 4D and Imaging Radar
6.6.1.Why 4D and Imaging Radars are Needed
6.6.2.Difference between 4D and 4D Imaging Radar
6.6.3.The Rayleigh Criterion
6.6.4.Option 1 - Increase the Operating Frequency
6.6.5.Option 2 - Larger Aperture, Zendar
6.6.6.Distributed Aperture SWOT Analysis
6.6.7.Plastic Omnium's Functionalized Bumper
6.6.8.Option 3 - Super-Resolution Software
6.6.9.Super-Resolution SWOT
6.6.10.Another Solution - Scanning
6.6.11.194 - 4D Imaging Radar Examples
6.6.12.Deployments of 4D Imaging Radars
7.AUTOMOTIVE RADAR CONSTITUENT TECHNOLOGIES
7.1.Waveforms and MIMO
7.1.1.Introduction to Waveforms
7.1.2.Typical Performance with FMCW (single Tx/Rx) (1)
7.1.3.Typical Performance with FMCW (single Tx/Rx) (2)
7.1.4.Multiple Inputs, Multiple Outputs
7.1.5.Scaling up of MIMO
7.1.6.Oculii (acquired by Ambarella in 2021)
7.1.7.Orthogonal Frequency Division Multiplexing
7.1.8.Multiple Frequency Shift Key (MFSK)
7.1.9.Random/Noise/Digital Code Modulation
7.1.10.Uhnder - DCM MIMO Chip Developer
7.2.Frequency Trends
7.2.1.Which Way is Frequency Going?
7.2.2.Applications of Different Frequencies
7.2.3.Applications of Different Frequencies
7.2.4.Automotive Radar Frequency Trends
7.2.5.Which Parameters Limit the Achievable KPIs
7.2.6.The Significance of
7.2.7.Example of High Frequency Radar Imaging
7.2.8.Packaging Benefits
7.2.9.Ranging
7.2.10.Surface Ice Detection
7.2.11.Radar Imaging at 300GHz from Fraunhofer
7.2.12.Adoption Path of High Frequency Radars
7.2.13.Challenges and Hurdles for High Frequency Radar
7.2.14.Regulation
7.3.Radomes, Antennas, Materials and Board Trends
7.3.1.Importance of the Radome
7.3.2.Radome and Range
7.3.3.Ideal Radome Properties
7.3.4.Radome Shape Considerations
7.3.5.Preperm
7.3.6.Laird - Side Lobe Reduction Skirt Material
7.3.7.Radar Aesthetics, Form and Function
7.3.8.Other material considerations
7.3.9.Key Material Suppliers
7.4.Radar Material Selection and Benchmarking
7.4.1.Dielectric Constant: Benchmarking Different Substrate Technologies
7.4.2.Dielectric Constant: Stability vs Frequency for Different Organic Substrates
7.4.3.Dielectric Constant: Stability vs Frequency for Different Inorganic Substrates (LTCC, Glass)
7.4.4.Loss Tangent: Benchmarking Different Substrate Technologies
7.4.5.Loss Tangent: Stability vs Frequency For Different Substrates
7.4.6.Dielectric Constant and Loss Tangent Stability: Behaviour at mmWave Frequencies and Higher
7.4.7.Temperature Stability of Dielectric Constant: Benchmarking Organic Substrates
7.4.8.Moisture Uptake: Benchmarking Different Substrate Technologies
7.5.Antennas
7.5.1.Antenna Design
7.5.2.Patch Array Design
7.5.3.Patch Array in Practice
7.5.4.Phased Array Antennas
7.5.5.Metawave - Analogue Beamforming/Beam Steering
7.5.6.Echodyne
7.5.7.Lunewave - 3D Printed Antenna
7.5.8.Waveguide Technologies
7.5.9.Gapwaves Multi-Layer Waveguide (MLW)
7.5.10.Waveguides in the Market
7.5.11.Antenna Miniaturisation
7.5.12.Packaging and Integration
8.RADAR MARKET, SUPPLIERS, SHARES, STRUCTURE, CHANGES
8.1.Availability of ADAS
8.2.Adoption of ADAS Driving Radar Growth
8.3.Level 3 Vehicles and Further Radar Adoption
8.4.Tier One Market Share by Volume - All Radars
8.5.Tier One Market Share by Revenue - All Radar
8.6.Tier One Market Share by Volume - Front Radar
8.7.Top OEM Front Radar Choices
8.8.Front Radar Popularity by Region - US and EU + UK + EFTA
8.9.Tier One Market Share by Volume - Side Radar
8.10.Top OEM Side Radar Choices
8.11.Side Radar Popularity by Region - US and EU + UK + EFTA
8.12.Radar Model Age
8.13.Most Popular Radar Models in US
8.14.Most popular radar models in EU + UK + EFTA
9.FORECASTS
9.1.Methodology - Autonomous Vehicles Report and Total Number of Radars
9.2.Methodology - Technology Splits
9.3.Addressable Market - Global Vehicle Sales and Peak Car by Region 2019-2045
9.4.Global Vehicle Sales and Peak Car by SAE Level 2022-2045
9.5.Forecasting Method: Sensors and Radar Technologies
9.6.Radar Unit Sales by SAE Level Forecast - 2020-2045
9.7.Radar Unit Sales by Region Forecast - 2020-2045
9.8.Radar Sales Revenue Forecast by SAE Level 2020-2045
9.9.Radar Unit Sales Forecast in the US by SAE Level 2020-2045
9.10.Radar Unit Sales Forecast in China by SAE Level 2020-2045
9.11.Radar Unit Sales Forecast in EU + UK + EFTA by SAE Level 2020-2045
9.12.Radar Unit Sales Forecast in Japan by SAE Level 2020-2045
9.13.Short-Range Radar Forecast by Virtual Channels 2020-2044
9.14.Long-Range Radar Forecast by Virtual Channels 2020-2044
9.15.Radar Sales Proportionally by Frequency 2020-2045
9.16.Radar Sales Proportionally by Semiconductor Technology 2020-2045
9.17.Low-Loss Material Market Forecast for Automotive Radar 2020-2045
10.COMPANY PROFILES
 

価格および注文方法

車載用レーダー市場 2025-2045年:ロボタクシーと自動運転車

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
電子版_PDF(ユーザー 1-5名)
¥990,000
電子版_PDF(ユーザー 6-10名)
¥1,406,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,140,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

レポート概要

スライド 317
フォーキャスト 2045
発行日 Dec 2024
ISBN 9781835700884
 

コンテンツのプレビュー

pdf Document Webinar Slides
pdf Document Sample pages
 
 
 
 

Subscription Enquiry