シリコンフォトニクスとフォトニック集積回路 2025-2035年:技術、市場、予測

化合物半導体、トランシーバー、リン化インジウム(InP)PIC(フォトニック集積回路)、薄膜ニオブ酸リチウム(TFLN)PIC、量子向けPIC、光インターコネクト、製造、材料、CPO(コ・パッケージド・オプティクス)

製品情報 概要 目次 価格 Related Content
本調査レポートでは、シリコンフォトニクスを含むフォトニック集積回路業界を解説します。市場の有力企業、先端材料(TFLN、BTOなど)、AIなどの主要用途を考察し、その上でシリコンフォトニクスとフォトニック集積回路(PIC)市場の成長を予測しています。また、プログラマブルフォトニクス、光量子コンピューター、CPOなどの先進技術についても解説しており、10年以内に市場が500億ドルを超える規模になると予測するなど、大きな機会があることを明らかにしています。
「シリコンフォトニクスとフォトニック集積回路 2025-2035年」が対象とする主なコンテンツ
(詳細は目次のページでご確認ください)
● 全体概要
● 概論とキーコンセプト
  • 技術的背景 - シリコンフォトニクスとは?
  • フォトニック集積回路のキーコンセプト
● 製造と材料
  • SOI(シリコン・オン・インシュレータ)、SiN(窒化ケイ素)、InP、TFLN、BTO、ポリマー、希土類金属解説、ベンチマーク、主要企業
● 用途
  • 半導体エネルギー危機
  • データセンター向け高性能トランシーバー用フォトニック集積回路
  • オンデバイスインターコネクト用フォトニック集積回路
  • 先端パッケージングとCPO
  • 混成集積回路:CPO
  • AI、ニューロモーフィックコンピューティング用フォトニックエンジンとフォトニックアクセラレータ
  • 量子コンピューティング用フォトニック集積回路
  • フォトニック集積回路搭載センサー
  • フォトニック集積回路搭載LiDAR
● 予測
● 企業概要
 
「シリコンフォトニクスとフォトニック集積回路 2025-2035年」は以下の情報を提供します
  • PIC搭載高性能トランシーバー市場の有力企業分析
  • CPO(コ・パッケージド・オプティクス)概要とキーコンセプト
  • 量子システム用フォトニック集積回路分析
  • フォトニクス材料のベンチマークと比較(材料別産業分析)。薄膜ニオブ酸リチウム(TFLN)やチタン酸バリウム(BTO)などの先端材料分析
  • フォトニック集積回路の基礎知識とキーコンセプト(重要部品や基本原理など)
  • NVIDIA推奨サーバーアーキテクチャが多数のトランシーバーを要する背景に注目し、AIがPIC搭載トランシーバー需要をどう変化させているか分析
  • PIC製造技術概要
  • インターコネクト、LiDAR、バイオセンサー、ガスセンサーなど、将来のPIC用途を考察
● 本調査レポートは広範な調査と各業界専門家へのインタビューに基づいており、フォトニック集積回路の今後に関心を持つすべての方に有益な分析を提供します。
市場予測:
  • フォトニック集積回路市場全体の10年間予測
  • AI、データセンター、HPC(データ通信)用PICトランシーバーの10年間出荷台数予測
  • データ通信用PICトランシーバーの10年間コスト予測(Gbps当たり)
  • データ通信用PICトランシーバー市場の10年間予測
  • AIアクセラレータの10年間出荷台数予測
  • 5G用PICトランシーバー市場の10年間予測
  • 5G用PICトランシーバーの10年間出荷台数予測
  • 量子PIC市場の10年間予測
  • PIC搭載LiDAR市場の10年間予測
  • PIC搭載センサー市場の10年間予測
 
What are the benefits and challenges for Silicon Photonics and Photonic Integrated Circuits?
Photonic Integrated Circuits (PICs) are tiny optical systems made out of materials such as Silica (Glass), Silicon, or Indium Phosphide. PICs enable everything from complex optical designs that allow billions of bits of information to be sent and received in a package the size of a candy bar to artificial noses that can detect different compounds and molecules in the air around them. Their importance in high-speed communication within AI data centers is leading to rapid growth in demand for PIC-enabled transceivers to help machine learning models grow ever larger.
 
By leveraging the billions of dollars in investment in CMOS chip manufacturing, PICs can unlock new processing scaling potential beyond Moore's law. However, there are still significant challenges for the PIC market, such as material limitations, integration complexity, and cost management. Large demand volumes are required to offset the initial cost of designing and manufacturing PICs, and production lead times can take months. IDTechEx's new PIC report thoroughly investigates the PIC market and has identified Photonic Transceivers for AI as an emerging segment that is soon to be the largest source of demand for PICs.
 
What are the PIC materials of the future?
There is a wide variety of future PIC materials. Most of the current market uses Silicon and Silica-based PICs for light propagation. However, as an indirect bandgap semiconductor, silicon is not a practical light source or photodetector. Therefore, silicon is usually combined with III-V materials for light sources and photodetection. Leveraging the enormous existing integrated circuit manufacturing industry and generally taking advantage of mature node processes, silicon's market dominance is set to continue.
 
However, Thin Film Lithium Niobate (TFLN), with its moderate Pockels effect and low material loss, is emerging as a strong contender for applications that require high-performance modulation such as quantum systems or potentially high-performance transceivers in the future. Monolithic Indium Phosphide (InP) continues to be a major player due to its ability to detect and emit light. Additionally, innovative materials like Barium Titanite (BTO) and rare-earth metals are being explored for their potential in quantum computing and other cutting-edge applications.
 
How AI is changing the demand for Silicon Photonics and PICs
The rise of Artificial Intelligence (AI) has spurred an unprecedented demand for high-performance transceivers capable of supporting the massive data rates required by AI accelerators and data centers. Silicon Photonics and PICs are at the forefront of this revolution, with their ability to transmit data at speeds of 1.6Tbps and beyond. As shown by Nvidia's latest H200 server units, which according to IDTechEx's research, require approximately 2.5 800G transceivers per GPU, the need for efficient, high-bandwidth communication is becoming more critical for AI, positioning Silicon Photonics and PICs as essential components in the AI-driven future. The biggest driver of the development of PIC transceivers is AI, as higher-performance AI accelerators will require higher-performance transceivers, with 3.2Tbps transceivers expected to arrive by 2026.
 
What are the future applications?
Other applications for Silicon Photonics and PICs vary - from high-bandwidth chip-to-chip interconnects to advanced packaging and co-packaged optics, these technologies are paving the way for next-generation computing.
 
Photonic Engines and Accelerators: Using certain photonic components such as Mach-Zehnder Interferometers, and controlling these components through electro-optical interconnects, high-performance processors and programmable PIC devices can be designed and manufactured, unlocking higher performance than what is possible with electronic accelerators alone.
 
PIC-based Sensors: Certain PIC materials, such as Silicon Nitride, can used for a range of different sensors, from gas sensors to 'artificial noses'. The healthcare sensor industry may be able to take advantage of the miniaturization of optical components into PIC devices, which could see applications in Point-of-Care diagnostics or wearables.
 
PIC-based FMCW LiDAR has the potential to transform the automotive and agricultural industries with applications in drones and autonomous vehicles.
 
Quantum Systems: Companies investing in Trapped Ion and Photon-based Quantum Computing are looking to PICs for more stable and scalable quantum systems. The challenge lies in achieving the precise control of photons necessary for quantum computation.
 
Source: IDTechEx Research
 
The market for Silicon Photonics and PICs is experiencing robust growth, driven by the surge in AI and datacom transceiver demand. Key players in the industry such as Intel/Jabil, Coherent, and Infinera are actively using PICs within their transceivers. Innolight, a China-based transceiver company, hit 1.6Tbps of transfer speed in their latest transceivers in late 2023. Coherent, which has its own InP wafer fab facilities, is also developing higher-performance transceivers for 1.6T+ applications. Intel Silicon Photonics, which has transferred its transceiver business to Jabil, announced it had shipped over 8 million PICs since 2016, showing the maturity of the technology. IDTechEx forecasts that PIC technology is to continue to dominate the high-performance transceiver market, further solidifying its position as a critical component in the modern technological landscape.
 
What is in this report?
This report includes a detailed examination of the latest innovations in Silicon Photonics and Photonic Integrated Circuits, key technical trends, analysis across the value chain, major player analysis, and granular market forecasts.
 
The report covers the following topics:
  • Key Player Analysis for the High-Performance PIC-based Transceiver Market.
  • A breakdown of Co-Packaged Optics and its key concepts.
  • Analysis of Photonic Integrated Circuits for Quantum Systems.
  • Benchmarks and comparisons of photonic materials, with an industry breakdown by material. It also includes an insight into emerging materials such as Thin-Film Lithium Niobate (TFLN) and Barium Titanite (BTO).
  • Photonic Integrated Circuit Fundamentals and Key Concepts, including important components, and underlying principles.
  • An analysis of how AI is changing demand for PIC-based transceivers, with a look at how Nvidia's recommended server architecture requires large numbers of transceivers.
  • An overview of PIC manufacturing techniques.
  • A look into future applications of PICs such as interconnects, LiDAR, biosensors, and gas sensors.
 
The report is based on extensive research and interviews with industry experts and provides valuable insights for anyone interested in the future of photonic integrated circuits. It includes 32 company profiles, many from first-hand interviews, and summaries from events including SPIE Photonex 2024 and SPIE Photonics West 2024.
 
Market Forecasts:
  • 10-year Total Photonic Integrated Circuit Market Forecast.
  • 10-year PIC Transceivers for AI, Data Centers and HPC (Datacom) Unit Shipments Forecast
  • 10-year PIC Transceivers for Datacom Cost per Gbps Forecast
  • 10-year PIC Transceivers for Datacom Market Forecast
  • 10-year AI Accelerator Unit Shipments Forecast
  • 10-year PIC Transceivers for 5G Market Forecast
  • 10-year PIC Transceivers for 5G Unit Shipments Forecast
  • 10-year Quantum PIC Market Forecast
  • 10-year PIC-based LiDAR Market Forecast
  • 10-year PIC-based Sensor Market Forecast
Report MetricsDetails
CAGRThe PIC datacom transceiver market forecast is expected to reach US$43.1 billion by 2035, growing at a CAGR of 23.6% since 2025.
Forecast Period2024 - 2035
Forecast UnitsVolume (units), Revenue (USD billions/millions)
Regions CoveredWorldwide
Segments CoveredTotal Photonic Integrated Circuit Market Forecast PIC Transceivers for AI, Data Centers and HPC (Datacom) Unit Shipments Forecast PIC Transceivers for Datacom Cost per Gbps Forecast PIC Transceivers for Datacom Market Forecast AI Accelerator Unit Shipments Forecast PIC Transceivers for 5G Market Forecast PIC Transceivers for 5G Unit Shipments Forecast Quantum PIC Market Forecast PIC-based LiDAR Market Forecast PIC-based Sensor Market Forecast
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
1.EXECUTIVE SUMMARY
1.1.Key Current & Future Photonic Integrated Circuits Applications
1.2.What are Photonic Integrated Circuits (PICs)?
1.3.Electronic and Photonic Integrated Circuits Compared
1.4.Advantages and Challenges of Photonic Integrated Circuits
1.5.Integration schemes of PICs
1.6.Integrated Photonic Transceivers
1.7.Datacom PIC-based Transceiver Market Key Players
1.8.Roadmap for PIC-based Transceivers (chart)
1.9.Operational Frequency Windows of Optical Materials
1.10.Silicon and Silicon-on-insulator (SOI)
1.11.Silicon Nitride (SiN)
1.12.Indium Phosphide
1.13.Organic Polymer on Silicon
1.14.Thin Film Lithium Niobate
1.15.Barium Titanite and Rare Earth metals
1.16.IDTechEx Platform Score (Materials Benchmarked)
1.17.PIC Material Platforms Benchmarked (Visualized)
1.18.Photonic Integrated Circuit Market (Materials)
1.19.Forecasting the PIC Transceiver Market: Changes From the 2024 Edition
1.20.PIC Transceivers for AI Units Forecast
1.21.Forecasting PIC Transceiver Pricing
1.22.PIC Datacom Transceiver Market Forecast
1.23.PIC-based Transceivers for 5G Forecast (Units and Market)
1.24.Quantum PIC Market Forecast
1.25.PIC-based Sensor Market Forecast
1.26.PIC-based LiDAR Market Forecast
1.27.Total PIC Market Data
1.28.Company Profiles and Articles included with this report
2.INTRODUCTION AND KEY CONCEPTS
2.1.Introduction
2.1.1.Silicon Photonics Definitions
2.1.2.What is the difference between PICs and Silicon Photonics?
2.2.Technology Background
2.2.1.What is an Integrated Circuit (IC)?
2.2.2.What are Photonic Integrated Circuits (PICs)?
2.2.3.Photonics versus Electronics
2.2.4.Electronic and Photonic Integrated Circuits Compared
2.2.5.Advantages and Challenges of Photonic Integrated Circuits
2.2.6.Silicon and Photonic Integrated Circuits
2.2.7.Key benefits of PICs
2.3.Photonic Integrated Circuit Key Concepts
2.3.1.Optical IO, Coupling and Couplers
2.3.2.Emission and Photon Sources/Lasers
2.3.3.Detection and Photodetectors
2.3.4.Compound Semiconductor Lasers and Photodetectors (III-V)
2.3.5.Modulation, Modulators, and Mach-Zehnder Interferometers
2.3.6.Light Propagation and Waveguides
2.3.7.Optical Component Density
2.3.8.Basic Optical Data Transmission
2.3.9.PIC Architecture
3.MATERIALS AND MANUFACTURING
3.1.Introduction
3.1.1.Wafers
3.1.2.Wafer sizes by platform
3.1.3.Integration schemes
3.1.4.Heterogenous Integration Techniques Compared
3.1.5.Micro-Transfer Printing for Heterogenous Integration of InP and Silicon Photonics
3.1.6.Operational Frequency Windows of Optical Materials
3.1.7.Important Wavelengths/Frequencies Summarized
3.1.8.Changing the Way Materials Behave in PICs
3.1.9.Research Institutions and PIC-only Foundries developing PICs (1)
3.1.10.Research Institutions and PIC-only Foundries developing PICs (2)
3.1.11.Research Institutions and PIC-only Foundries developing PICs (3)
3.1.12.Silicon and Silicon-on-insulator (SOI)
3.1.13.SOI and Silicon PIC Players
3.1.14.Silicon Semiconductor foundry in-house technologies
3.1.15.TSMC's entry to the silicon photonics market
3.1.16.CEA-Leti's and imec's Latest SOI PIC developments
3.1.17.SOI Benchmarked
3.1.18.Silicon Nitride (SiN)
3.1.19.SiN PIC Players
3.1.20.SiN Key Foundries
3.1.21.Case Study: AEPONYX SiN PICs
3.1.22.SiN Benchmarked
3.1.23.Silicon (SOI and SiN) device heterogenous integration
3.1.24.Indium Phosphide
3.1.25.InP PIC Players
3.1.26.InP Manufacturing
3.1.27.Indium Phosphide Incumbent Integration Technologies (1)
3.1.28.Indium Phosphide Incumbent Integration Technologies (2)
3.1.29.InP Benchmarked
3.1.30.Organic Polymer on Silicon
3.1.31.Case Study: How is Organic Polymer PICs are Manufactured (Lightwave Logic)
3.1.32.Polymer on Insulator Benchmarked
3.1.33.Thin Film Lithium Niobate
3.1.34.How is TFLN Manufactured
3.1.35.TFLN Integration and Modulator Geometry
3.1.36.TFLN Benchmarked
3.1.37.Barium Titanite and Rare Earth metals
3.1.38.Case Study: Lumiphase BTO-enhanced PICs
3.1.39.Case Study: How BTO PICs are Manufactured (Lumiphase)
3.1.40.BTO Benchmarked
3.2.Materials Benchmarked
3.2.1.IDTechEx Platform Score (Materials Benchmarked)
3.2.2.PIC Material Platforms Benchmarked (Visualized)
3.2.3.The PIC Design Cycle: Multi-Project Wafers
3.2.4.Case Study: Infinera Vertically Integrated PICs
3.2.5.Case Study: Coherent (II-VI)
4.APPLICATIONS
4.1.Future Applications for Photonic Integrated Circuits
4.2.The Semiconductor Energy Crisis
4.2.1.Semiconductor related-energy consumption growing rapidly
4.2.2.Imec: CO2 emissions per logic technology node are doubling every 10 years
4.2.3.PICs to improve compute efficiency beyond Moore's law
4.3.Photonic Integrated Circuits for High-Performance Transceivers for Data Centers
4.3.1.How an Optical Transceiver Works
4.3.2.PICs for data communication
4.3.3.Integrated Photonic Transceivers
4.3.4.Which Transceivers are using PICs?
4.3.5.PICs for 400G+
4.3.6.Pluggable optics
4.3.7.400G+ Pluggable Optic Form Factors
4.3.8.Pluggable Optical Line System (POLS)
4.3.9.Communication components - TROSA
4.3.10.Why do AI models need high-performance transceivers?
4.3.11.Datacom PIC-based Transceiver Market Key Players
4.3.12.Key Player Latest Datacom Transceivers Benchmarked
4.3.13.Interconnect families
4.3.14.Lanes in interconnect
4.3.15.Comparing roadmaps
4.3.16.Linear Drive and Linear Pluggable Optics (LPO)
4.3.17.Roadmap for PIC-based Transceivers (chart)
4.4.Photonic Integrated Circuits for On-Device Interconnects
4.4.1.Interconnects
4.4.2.Development trend for optical transceivers in high-end data centers
4.4.3.Overcoming the von Neumann bottleneck
4.4.4.Electrical Interconnects Case Study: Nvidia Grace Hopper for AI
4.4.5.Why improve on-device interconnects?
4.4.6.Improved Interconnects for Switches
4.4.7.Case Study: Ayer Labs TeraPHY
4.4.8.Case Study: Lightmatter's 'Passage' PIC-based Interconnect
4.5.Advanced Packaging and Co-Packaged Optics
4.5.1.Evolution roadmap of semiconductor packaging
4.5.2.Semiconductor packaging - an overview of technology
4.5.3.Key metrics for advanced semiconductor packaging performance
4.5.4.Four key factors of advanced semiconductor packaging
4.5.5.Overview of interconnection technique in semiconductor packaging
4.5.6.2.5D advanced semiconductor packaging technology portfolio
4.5.7.Roles of glass in semiconductor packaging
4.6.Hybrid integration: Co-Packaged Optics
4.6.1.The emergence of co-packaged optics (CPO)
4.6.2.Co-packaged optics for network switch
4.6.3.Pluggable optics vs CPO - 1
4.6.4.Pluggable optics vs CPO - 2
4.6.5.Optical dies integration for compute silicon
4.6.6.Future challenges in CPO
4.6.7.Co-packaging vs Co-packaged optics (CPO)
4.6.8.Co-packaged optics - package structure
4.6.9.Value proposition of CPO
4.6.10.Co-Packaged Optics (CPO), key for advancing switching and AI networks
4.6.11.Key technology building blocks for CPO
4.6.12.Key packaging components for CPO
4.6.13.Broadcom's CPO development timeline
4.6.14.Broadcom's CPO portfolio
4.6.15.Fan-Out Embedded Bridge (FOEB) Structure for Co-Packaged Optics
4.6.16.Glass-based Co-packaged optics - vision
4.6.17.Glass-based Co-packaged optics - Packaging structure
4.6.18.Glass-based Co-packaged optics - process development
4.6.19.Corning's 102.4 Tb/s test vehicle
4.6.20.Turn-Key solution required for CPO
4.7.Photonic Engines and Accelerators for AI and Neuromorphic Compute
4.7.1.Photonic Processors - Overview
4.7.2.Photonic Processing for AI
4.7.3.Programmable Photonics, Software-Defined Photonics, & Photonic FPGAs
4.7.4.Case Study: iPronics' Programmable PIC
4.8.Photonic Integrated Circuits for Quantum Computing
4.8.1.Introduction to Quantum Computing
4.8.2.Quantum computing - photonics
4.8.3.Overview of photonic platform quantum computing
4.8.4.Comparing key players in photonic quantum computing
4.8.5.PICs for Quantum
4.8.6.Trends for Quantum PICs at SPIE Photonics West 2024
4.8.7.Photonic Integrated Circuits versus Optical Tables and Fixed Optics
4.8.8.Advantages of Photonic Integrated Circuits versus Optical Tables and Fixed Optics
4.8.9.Disadvantages of Photonic Integrated Circuits versus Optical Tables and Fixed Optics
4.8.10.CEA Leti's Goals for Quantum PICS
4.8.11.Quantum Photonic Building Blocks (imec)
4.8.12.Initialization, manipulation, and readout of photonic platform quantum computers
4.8.13.Which platform for quantum PICs?
4.8.14.Future PIC Requirements of the Quantum Industry
4.8.15.Roadmap for photonic quantum hardware (chart)
4.8.16.SWOT Analysis: Photonic Quantum Computers
4.9.Photonic Integrated Circuit-based Sensors
4.9.1.Opportunities for PIC Sensors: Biomedical
4.9.2.Market players developing PIC Biosensors
4.9.3.Rockley Photonics: IP sale and likely end of PIC involvement
4.9.4.Opportunities for PIC Sensors: Gas Sensors
4.9.5.Market players developing PIC-based Gas Sensors
4.9.6.Opportunities for PIC Sensors: Structural Health Sensors
4.9.7.Market players developing Spectroscopic PICs
4.10.Photonic Integrated Circuit-based LiDAR
4.10.1.LiDAR in automotive applications
4.10.2.Opportunities for PIC Sensors: LiDAR Sensors
4.10.3.Core Aspects of LiDAR
4.10.4.Market players developing PIC-based LiDAR (1)
4.10.5.Market players developing PIC-based LiDAR (2)
4.10.6.LiDAR Wavelength and Material Trends
4.10.7.Major challenges of PIC-based FMCW lidars
4.10.8.E-Noses for Automotive
5.FORECASTS
5.1.Forecasting the PIC Transceiver Market: Changes From the 2024 Edition
5.2.Forecasting Growth in GPUs and Other Accelerators
5.3.Forecasts with table: Server boards, CPUs and GPUs/Accelerators
5.4.Optical Transceivers per AI Accelerator (Methodology)
5.5.Methodology - Transceiver Market Share by Speed
5.6.PIC Transceivers for AI Units Forecast
5.7.PIC Transceivers for AI Units Forecast
5.8.Forecasting PIC Transceiver Pricing
5.9.Forecasting PIC Transceiver Pricing: Tables
5.10.PIC Datacom Transceiver Market Forecast
5.11.PIC Datacom Transceiver Revenue Forecast with Table
5.12.PIC-based Transceivers for 5G Forecast (Units and Market)
5.13.Quantum PIC Market Forecast
5.14.Quantum PIC Market Forecast with Table
5.15.PIC-based Sensor Market Forecast
5.16.PIC-based LiDAR Market Forecast
5.17.Photonic Integrated Circuit Market (Materials)
5.18.Photonic Integrated Circuit Market by Material with Table
5.19.Total PIC Market Data
6.COMPANY PROFILES
6.1.Profiles
6.1.1.ACCRETECH (Grinding Tool)
6.1.2.AEPONYX
6.1.3.Amkor — Advanced Semiconductor Packaging
6.1.4.ASE — Advanced Semiconductor Packaging
6.1.5.Ayar Labs: AI Accelerator Interconnect
6.1.6.CEA-Leti (Advanced Semiconductor Packaging)
6.1.7.Ciena
6.1.8.Coherent: Photonic Integrated Circuit-Based Transceivers
6.1.9.EFFECT Photonics
6.1.10.EVG (D Hybrid Bonding Tool)
6.1.11.GlobalFoundries
6.1.12.HD Microsystems
6.1.13.Henkel (Semiconductor packaging, Adhesive Technologies division)
6.1.14.iPronics: Programmable Photonic Integrated Circuits
6.1.15.JCET Group
6.1.16.JSR Corporation
6.1.17.Lightelligence
6.1.18.Lightmatter
6.1.19.LioniX
6.1.20.LIPAC
6.1.21.LPKF
6.1.22.Lumiphase
6.1.23.Lumiphase - Company Profile - IDTechEx Portal
6.1.24.Mitsui Mining & Smelting (Advanced Semiconductor Packaging)
6.1.25.QuiX Quantum
6.1.26.NanoWired
6.1.27.QuiX Quantum (Update)
6.1.28.Resonac (RDL Insulation Layer)
6.1.29.Scintil Photonics
6.1.30.TOK
6.1.31.TSMC (Advanced Semiconductor Packaging)
6.1.32.Vitron (Through-Glass Via Manufacturing) — A LPKF Trademark
6.2.Articles
6.2.1.SPIE Photonics West 2024: Integrated Photonics for Quantum Systems - Article: Topic overview
6.2.2.SPIE Photonics West 2024: Photonic Integrated Circuit Manufacturing - Article: Event summary
6.2.3.Event Summary: SPIE Photonex 2024
 

価格および注文方法

シリコンフォトニクスとフォトニック集積回路 2025-2035年:技術、市場、予測

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
電子版_PDF(ユーザー 1-5名)
¥990,000
電子版_PDF(ユーザー 6-10名)
¥1,406,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,140,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。
フォトニック集積回路市場は2035年までに市場全体で540億ドル超の規模になると見込まれる

レポート概要

スライド 226
企業数 Over 30
フォーキャスト 2035
発行日 Jan 2025
 

コンテンツのプレビュー

pdf Document Webinar Slides
pdf Document Sample pages
 

Customer Testimonial

quote graphic
"The resources produced by IDTechEx are a valuable tool... Their insights and analyses provide a strong foundation for making informed, evidence-based decisions. By using their expertise, we are better positioned to align our strategies with emerging opportunities."
Director of Market Strategy
Centre for Process Innovation (CPI)
 
 
 
ISBN: 9781835700921

Subscription Enquiry